ON A CLASS OF PROBABILITY SPACES

DAVID BLACKWELL UNIVERSITY OF CALIFORNIA, BERKELEY

1. Introduction

Kolmogorov's model for probability theory [10], in which the basic concept is that of a probability measure P on a Borel field β of subsets of a space Ω , is by now almost universally considered by workers in probability and statistics to be the appropriate one. In 1948, however, three somewhat disturbing examples were published by Dieudonné [2], Andersen and Jessen [1], and Doob [3] and Jessen [9], as follows.

A. (Dieudonné). There exist a pair (Ω, \mathcal{B}) , a probability measure P on \mathcal{B} , and a Borel subfield $\mathcal{A} \subset \mathcal{B}$ for which there is no function $Q(\omega, E)$ defined for all $\omega \in \Omega$, $E \in \mathcal{B}$ with the following properties: Q is for fixed E an \mathcal{A} -measurable function of ω , for fixed ω a probability measure on \mathcal{B} , and for every $A \in \mathcal{A}, E \in \mathcal{B}$, we have

(1)
$$\int_{A} Q(\omega, E) dP(\omega) = P(A \cap E).$$

B. (Andersen and Jessen). There exist a sequence of pairs $(\Omega_n, \boldsymbol{\beta}_n)$ and a function P defined for all sets of $\cup \boldsymbol{\mathcal{A}}_n$, where $\boldsymbol{\mathcal{A}}_n$ consists of all subsets of the infinite product space $\Omega_1 \times \Omega_2 \times \cdots$ in the Borel field determined by sets of the form $B_1 \times \cdots \times B_n \times \Omega_{n+1} \times \Omega_{n+2} \times \cdots$, $B_i \in \boldsymbol{\beta}_i$, $i = 1, \cdots, n$, such that P is countably additive on each $\boldsymbol{\mathcal{A}}_n$ but not on $\cup \boldsymbol{\mathcal{A}}_n$.

C. (Doob, Jessen). There exist a pair $(\Omega, \boldsymbol{\beta})$, a probability measure P on $\boldsymbol{\beta}$, and two real-valued $\boldsymbol{\beta}$ -measurable functions f, g on Ω such that

(2)
$$P\{\omega: f \in F, g \in G\} = P\{\omega: f \in F\}P\{\omega: g \in G\}$$

holds for every two linear Borel sets F, G but not for every two linear sets F, G for which the three probabilities in (2) are defined.

In each case Ω is the unit interval, $\boldsymbol{\beta}$ is the Borel field determined by the Borel sets and one or more sets of outer Lebesgue measure 1 and inner Lebesgue measure 0, and Pconsists of a suitable extension of Lebesgue measure to $\boldsymbol{\beta}$. The fact that A, B, C cannot happen if Ω is a Borel set in a Euclidean space and $\boldsymbol{\beta}$ consists of the Borel subsets of Ω is known. For A, the proof was given by Doob [4], for B by Kolmogorov [10], and for C by Hartman [7].

To the extent that A, B, C violate one's intuitive concept of probability, they suggest that the Kolmogorov model is too general, and that a more restricted concept, in which A, B, C cannot happen, is worth considering. In their book [5], Gnedenko and Kolmogorov propose a more restricted concept, that of a *perfect* probability space, which is a triple (Ω, \mathcal{B}, P) such that for any real-valued \mathcal{B} -measurable function f and any linear set A for which $\{\omega: f(\omega) \in A\} \in \mathcal{B}$, there is a Borel set $B \subset A$ such that

(3)
$$P\{\omega: f(\omega) \in B\} = P\{\omega: f(\omega) \in A\}.$$

This investigation was supported (in part) by a research grant from the National Institutes of Health, Public Health Service.