ON A CLASS OF PROBABILITY SPACES

DAVID BLACKWELL
UNIVERSITY OF CALIFORNIA, BERKELEY

1. Introduction

Kolmogorov's model for probability theory [10], in which the basic concept is that of a probability measure P on a Borel field \mathcal{B} of subsets of a space Ω, is by now almost universally considered by workers in probability and statistics to be the appropriate one. In 1948, however, three somewhat disturbing examples were published by Dieudonné [2], Andersen and Jessen [1], and Doob [3] and Jessen [9], as follows.
A. (Dieudonné). There exist a pair (Ω, \boldsymbol{B}), a probability measure P on $\boldsymbol{\mathcal { B }}$, and a Borel subfield $\boldsymbol{A} \subset \boldsymbol{\beta}$ for which there is no function $Q(\omega, E)$ defined for all $\omega \in \Omega, E \in \mathcal{B}$ with the following properties: Q is for fixed E an \mathcal{A}-measurable function of ω, for fixed ω a probability measure on \mathcal{B}, and for every $A \in \mathcal{A}, E \in \mathcal{B}$, we have

$$
\begin{equation*}
\int_{A} Q(\omega, E) d P(\omega)=P(A \cap E) \tag{1}
\end{equation*}
$$

B. (Andersen and Jessen). There exist a sequence of pairs $\left(\Omega_{n}, \boldsymbol{\beta}_{n}\right)$ and a function P defined for all sets of $\cup \mathcal{A}_{n}$, where \mathcal{A}_{n} consists of all subsets of the infinite product space $\Omega_{1} \times \Omega_{2} \times \cdots$ in the Borel field determined by sets of the form $B_{1} \times \cdots \times B_{n} \times$ $\Omega_{n+1} \times \Omega_{n+2} \times \cdots, B_{i} \in \mathcal{B}_{i}, i=1, \cdots, n$, such that P is countably additive on each \boldsymbol{A}_{n} but not on $\cup \mathcal{A}_{n}$.
C. (Doob, Jessen). There exist a pair (Ω, \boldsymbol{B}), a probability measure P on $\boldsymbol{\mathcal { B }}$, and two real-valued \mathcal{B}-measurable functions f, g on Ω such that

$$
\begin{equation*}
P\{\omega: f \in F, g \in G\}=P\{\omega: f \in F\} P\{\omega: g \in G\} \tag{2}
\end{equation*}
$$

holds for every two linear Borel sets F, G but not for every two linear sets F, G for which the three probabilities in (2) are defined.

In each case Ω is the unit interval, $\boldsymbol{\beta}$ is the Borel field determined by the Borel sets and one or more sets of outer Lebesgue measure 1 and inner Lebesgue measure 0 , and P consists of a suitable extension of Lebesgue measure to \mathcal{B}. The fact that A, B, C cannot happen if Ω is a Borel set in a Euclidean space and β consists of the Borel subsets of Ω is known. For A, the proof was given by Doob [4], for B by Kolmogorov [10], and for C by Hartman [7].

To the extent that A, B, C violate one's intuitive concept of probability, they suggest that the Kolmogorov model is too general, and that a more restricted concept, in which A, B, C cannot happen, is worth considering. In their book [5], Gnedenko and Kolmogorov propose a more restricted concept, that of a perfect probability space, which is a triple (Ω, \mathcal{B}, P) such that for any real-valued \boldsymbol{B}-measurable function f and any linear set A for which $\{\omega: f(\omega) \in A\} \in B$, there is a Borel set $B \subset A$ such that

$$
\begin{equation*}
P\{\omega: f(\omega) \in B\}=P\{\omega: f(\omega) \in A\} . \tag{3}
\end{equation*}
$$

This investigation was supported (in part) by a research grant from the National Institutes of Health, Public Health Service.

