MATHEMATICS = SET THEORY?

"No one shall drive us out of the paradise that Cantor has created"

David Hilbert

1.1. Set theory

The basic concept upon which the discipline known as set theory rests is the notion of set membership. A set may be initially thought of simply as a collection of objects, these objects being called *elements* of that collection. Membership is the relation that an object bears to a set by dint of its being an element of that set. This relation is symbolised by the Greek letter \in (epsilon). " $x \in A$ " means that A is a collection of objects, one of which is x, i.e. x is a member (element) of A. When x is not an element of A, this is written $x \notin A$. If $x \in A$, we may also say that x belongs to A.

From these fundamental ideas we may build up a catalogue of definitions and constructions that allow us to specify particular sets, and construct new sets from given ones. There are two techniques used here.

(a) *Tabular form:* this consists in specifying a set by explicitly stating all of its elements. A list of these elements is given, enclosed in brackets. Thus

 $\{0, 1, 2, 3\}$

denotes the collection whose members are all the whole numbers up to 3.

(b) Set Builder form: this is a very much more powerful device that specifies a set by stating a property that is possessed by all the elements of the set, and by no other objects. Thus the property of "being a whole number smaller than four" determines the set that was given above in tabular form. The use of properties to define sets is enshrined in the

PRINCIPLE OF COMPREHENSION. If $\varphi(x)$ is a property or condition pertaining to objects x, then there exists a set whose elements are precisely the objects that have the property (or satisfy the condition) $\varphi(x)$.