Chapter 1

Introduction

We consider the Cauchy problem (or the initial value problem) for a system of wave equations

$$(\partial_t^2 - \Delta)u = F(u, \partial u, \partial^2 u), \qquad (t, x) \in (0, T) \times \mathbb{R}^n, \tag{1.1}$$

$$u(0,x) = \varphi(x), \ \partial_t u(0,x) = \psi(x), \quad x \in \mathbb{R}^n,$$
 (1.2)

where $u=(u_1,\ldots,u_N)$ is an \mathbb{R}^N -valued unknown function of $(t,x)\in\mathbb{R}\times\mathbb{R}^n$, and $\Delta=\sum_{k=1}^n\partial_k^2$ is the Laplacian, while ∂u and $\partial^2 u$ denote the first and second derivatives of u. Here we have used the notation $\partial_0=\partial_t=\partial/\partial t$ and $\partial_k=\partial_{x_k}=\partial/\partial x_k$ for $1\leq k\leq n$. More specifically, we write $\partial u=(\partial_a u_j)$ and $\partial^2 u=(\partial_a \partial_b u_j)$ with suffixes $1\leq j\leq N$ and $0\leq a,b\leq n$.

We assume that the nonlinear term $F = F(\lambda, \lambda', \lambda'')$ is a sufficiently smooth function of $(\lambda, \lambda', \lambda'') \in \mathbb{R}^N \times \mathbb{R}^{(n+1)N} \times \mathbb{R}^{(n+1)^2N}$, and that F(0,0,0) = 0. Here $\lambda = (\lambda_j), \lambda' = (\lambda'_{j,a})$, and $\lambda'' = (\lambda''_{j,ab})$ are variables for which $u = (u_j), \partial u = (\partial_a u_j)$, and $\partial^2 u = (\partial_a \partial_b u_j)$ are substituted, respectively, where the suffixes run as before. To simplify the description, we put $\square = \partial_t^2 - \Delta$, which is called the *d'Alembertian*.

We say that (1.1) is semilinear ¹, if the nonlinear term F depends only on $(u, \partial u)$ and is independent of $\partial^2 u$. The system (1.1) is said to be quasilinear, if the nonlinear term F is linear in $\partial^2 u$. In other words, (1.1) is quasilinear, if $F = (F_1, \ldots, F_N)$ has the following form:

$$F_j(u, \partial u, \partial^2 u) = \sum_{k=1}^N \sum_{a,b=0}^n \gamma_{jk}^{ab}(u, \partial u) \partial_a \partial_b u_k + G_j(u, \partial u), \quad 1 \le j \le N,$$
 (1.3)

where $G_j = G_j(\lambda, \lambda')$ and $\gamma_{jk}^{ab} = \gamma_{jk}^{ab}(\lambda, \lambda')$ are smooth functions satisfying

$$G_j(0,0) = (\nabla_{\lambda,\lambda'}G_j)(0,0) = 0$$

and $\gamma_{ik}^{ab}(0,0) = 0$.

As far as we consider classical solutions, the system (1.1) can be always reduced to a quasilinear system at the cost of the size N of the system² (see [20]). In order to apply the classical energy method for strictly hyperbolic equations, we assume

¹In some literatures, one writes "semilinear wave equations" for wave equations with nonlinearity of the form F = F(u), such as $F(u) = |u|^{p-1}u$.

²We only have to consider an extended system for $(u, \partial u)$.