PaRT I. DIFFERENTIAL CALCULUS

CHAPTER III

TAYLOR'S FORMULA AND ALLIED TOPICS

31. Taylor's Formula. The object of Taylor's Formula is to express the value of a function $f(x)$ in terms of the values of the function and its derivatives at some one point $x=a$. Thus

$$
\begin{align*}
f(x)=f(a) & +(x-a) f^{\prime}(a)+\frac{(x-a)^{2}}{2!} f^{\prime \prime}(a)+\cdots \\
& +\frac{(x-a)^{n-1}}{(n-1)!} \cdot f^{f^{(n-1)}(a)+R} \tag{1}
\end{align*}
$$

Such an expansion is necessarily true because the remåinder R may be considered as defined by the equation; the real significance of the formula must therefore lie in the possibility of finding a simple expression for R, and there are several.

Theorem. On the hypothesis that $f(x)$ and its first n derivatives exist and are continuous over the interval $a \leqq x \leqq b$, the function may be expanded in that interval into a polynomial in $x-a$,

$$
\begin{align*}
f(x)=f(a) & +(x-a) f^{\prime}(a)+\frac{(x-a)^{2}}{2!} f^{\prime \prime}(a)+\cdots \\
& +\frac{(x-a)^{n-1}}{(n-1)!} f^{(n-1)}(a)+R \tag{1}
\end{align*}
$$

with the remainder R expressible in any one of the forms

$$
\begin{align*}
R=\frac{(x-a)^{n}}{n!} f^{(n)}(\xi) & =\frac{h^{n}(1-\theta)^{n-1}}{(n-1)!} f^{(n)}(\xi) \\
& =\frac{1}{(n-1)!} \int_{0}^{h} t^{n-1} f^{(n)}(a+h-t) d t \tag{2}
\end{align*}
$$

where $h=x-a$ and $a<\xi<x$ or $\xi=a+\theta h$ where $0<\theta<1$.
A first proof may be made to depend on Rolle's Theorem as indicated in Ex. 8, p. 49. Let x be regarded for the moment as constant, say equal to b. Construct

