CHAPTER 1

Definitions of Transversely Holomorphic Foliations and Complex Secondary Classes

1.1. Basic Notions

In this monograph, foliations are assumed to be regular (without singularities) unless otherwise mentioned.

DEFINITION 1.1.1. Let M be a manifold without boundary. A decomposition of M into immersed submanifolds $\{L_{\alpha}\}_{\alpha \in A}$, called *leaves*, is a *foliation* of M if there is an integer q and an atlas $\{U_{\lambda}\}_{\lambda \in \Lambda}$ of M which satisfy the following conditions:

- 1) For each λ , there is a submersion $f_{\lambda} \colon U_{\lambda} \to \mathbb{R}^{q}$ such that each connected component of $L_{\alpha} \cap U_{\lambda}$ is a connected component of a fiber of f_{λ} .
- 2) Let $\varphi_{\mu\lambda}$ be the transition function from U_{λ} to U_{μ} . Then, there exists a diffeomorphism $\gamma_{\mu\lambda} : p_{\lambda}(U_{\lambda} \cap U_{\mu}) \to p_{\mu}(U_{\lambda} \cap U_{\mu})$ such that $\gamma_{\mu\lambda} \circ f_{\lambda} = f_{\mu} \circ \varphi_{\mu\lambda}$.

Such an atlas is called a *foliation atlas*. The integer q is called the (real) *codimension* of the foliation.

Remark 1.1.2.

- We may assume that fibers of f_λ are homeomorphic, and U_λ is homeomorphic to V_λ × B_λ in a way such that f_λ is the projection to the second factor, where B_λ = f_λ(U_λ) and V_λ is the fiber of f_λ.
- 2) If we assume that each f_{λ} is only continuous and that $\gamma_{\nu\mu}\gamma_{\mu\lambda} = \gamma_{\nu\lambda}$ for any $\lambda, \mu, \nu \in \Lambda$, then structures as above is called Γ_q -structures, where Γ_q denotes the pseudogroup of local diffeomorphisms of \mathbb{R}^q .