Classifi cation of log del Pezzo surfaces of index ≤ 2 and applications

4.1. Classification of log del Pezzo surfaces of index ≤ 2

From the results of Chapters 1 — 3 we obtain

Theorem 4.1. For any log del Pezzo surface Z of index ≤ 2 there exists a unique resolution of singularities $\sigma: Y \to Z$ (called right) such that Y is a right DPN surface of elliptic type and σ contracts exactly all exceptional curves of the Du Val and the logarithmic part of $\Gamma(Y)$. Vice versa, if Y is a right DPN surface of elliptic type, then there exists a unique morphism $\sigma: Y \to Z$ of contraction of all exceptional curves corresponding to the Du Val and the logarithmic part of $\Gamma(Y)$ which gives resolution of singularities of log del Pezzo surface Z of index ≤ 2 (it will be automatically the right resolution).

Thus, classifications of log del Pezzo surfaces of index ≤ 2 and right DPN surfaces of elliptic type are equivalent, and they are given by Theorems 3.18, 3.19 and 3.20.

Proof. Let Z be a log del Pezzo surface of index ≤ 2 . In Chapter 1, a "canonical" (i. e. uniquely defined) resolution of singularities $\sigma: Y \to Z$ had been suggested such that Y is a right DPN surface of elliptic type. First, a minimal resolution of singularities $\sigma_1: Y' \to Z$ is taken, and second, the blow-up of all intersection points of components of curves in preimages of non Du Val singularities K_n of Z is taken. Let us show that σ contracts exactly exceptional curves of Duv $\Gamma(Y)$ and Log $\Gamma(Y)$.

Let E be an exceptional curve of Y corresponding to a vertex of the subgraph $\mathrm{Duv}\,\Gamma(Y)$ or $\mathrm{Log}\,\Gamma(Y)$. Let $\widetilde{C_g}\in |-2K_Z|$ be a non-singular curve of Z which does not contain singular points of Z (it does exist by Theorem 1.5), and $C_g=\sigma^{-1}(\widetilde{C_g})$. Then (see Sections 1.5 and 2) $C_g+E_1+\cdots+E_k\in |-2K_Y|$ where E_i are all exceptional curves on Y with the square (-4) and C_g a non-singular irreducible curve of genus $g\geq 2$.