CHAPTER 3

Log terminal modifications

3.1. Log terminal modifications

Many results of this chapter holds in arbitrary dimension modulo log MMP.

PROPOSITION-DEFINITION 3.1.1 (cf. [Sh2, 9.1]; see also [Ut, 6.16]). Let (X, D) be a log variety of dimension ≤ 3 . Assume that $K_X + D$ is lc. Then there exists a *log terminal modification* of (X, D); that is, a birational contraction $g: X' \to X$ and a boundary D' on X' such that

(i)
$$K_{X'} + D' \equiv g^*(K_X + D);$$

- (ii) $K_{X'} + D'$ is dlt;
- (iii) X' is Q-factorial.

Moreover, if dim X = 2, it is possible to choose X' smooth.

PROOF. Consider a log resolution $h: Y \to X$. We have

(3.1)
$$K_Y + D_Y = h^*(K_X + D) + E^{(+)} - E^{(-)},$$

where D_Y is the proper transform D on Y and $E^{(+)}$, $E^{(-)}$ are effective exceptional \mathbb{Q} -divisors without common components. Then $D_Y + E^{(-)}$ is a boundary and $K_Y + D_Y + E^{(-)}$ is dlt. Apply log MMP to $(Y, D_Y + E^{(-)})$ over X. We get a birational contraction $g: X' \to X$ from a normal \mathbb{Q} -factorial variety X'. Denote by D' the proper transform of $D_Y + E^{(-)}$ on X'. Then $K_{X'} + D'$ is dlt and g-nef. It is also obvious that $g_*D' = D$. We prove (i). Since the inverse to the birational map $h: Y \dashrightarrow X'$ does not contract divisors,

$$K_{X'} + D' = h_* \left(K_Y + D_Y + E^{(-)} \right) = h_* \left(f^* (K_X + D) + E^{(+)} \right) = q^* (K_X + D) + h_* E^{(+)}.$$

On the other hand, by numerical properties of contractions (see e.g., [Sh2, 1.1]) in the last formula all the coefficients of $h_*E^{(+)}$ should be nonpositive, i.e., all of them are equal to zero.

Finally, we consider the case dim X = 2. If $E^{(+)} \neq 0$, then $(E^{(+)})^2 < 0$. From this $E^{(+)} \cdot E < 0$ for some E. Then $E^2 < 0$ and by (3.1), $K_Y \cdot E < 0$ and $(K_Y + D_Y + E^{(-)}) \cdot E < 0$. Hence E is a -1-curve and steps of log MMP over X are contractions of such curves. Continuing the process, we obtain a smooth surface X'. This proves the statement.