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§1. Introduction

A symplectic variety is a normal complex variety X with a holo-
morphic symplectic form ω on the regular part Xreg and with rational
Gorenstein singularities. Affine symplectic varieties arise in many dif-
ferent ways such as closures of nilpotent orbits of a complex simple Lie
algebra, as Slodowy slices to such nilpotent orbits or as symplectic re-
ductions of holomorphic symplectic manifolds with Hamiltonian actions.
Many examples of affine symplectic varieties tend to require large em-
bedding codimensions compared to their dimensions.

In this article we treat the rarest case, namely affine symplectic hy-
persurfaces. For technical reasons we also impose the condition that X
admit a good C

∗-action, i.e. that its affine coordinate ring A = C[X] be
positively graded, A = ⊕i≥0Ai with A0 = C, and that ω is also homoge-
neous of positive weight s. This condition is satisfied in all examples we
know. Finally, such a homogeneous symplectic hypersurface X is called
indecomposable if the unique fixed point of the C∗-action is a Poisson
subscheme of X. As the term indecomposable indicates, such singulari-
ties are essential factors of more general hypersurfaces in the sense that
every homogeneous hypersurface (X,ω) equivariantly decomposes into
a product W1 × ... × Wk × X ′, where X ′ is an indecomposable homo-
geneous hypersurface and each Wi is isomorphic to C

2 with a standard
symplectic form of the same weight s as ω (Lemma 2.5).

Indecomposable homogeneous hypersurfaces X = {f = 0} ⊂ C
2n+1

have the remarkable property that the Poisson structure {−,−} : A ×
A → A defined on the coordinate ring A by the symplectic structure
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