Advanced Studies in Pure Mathematics 32, 2001 Groups and Combinatorics — in memory of Michio Suzuki pp. 355–368

On the vertices of modules in the Auslander–Reiten quiver III

Tetsuro Okuyama and Katsuhiro Uno

§0. Introduction

Let kG be the group algebra of a finite group G over a field k of characteristic p, where p is a prime. We denote the stable Auslander-Reiten quiver (AR quiver for short) of kG by $\Gamma_s(kG)$. For the definition of an AR quiver, see [B]. It is known that each connected component Γ of $\Gamma_s(kG)$ has the uniquely determined tree class \mathcal{T} . The AR component Γ is isomorphic as graphs to \mathbb{ZT}/π , where \mathbb{ZT} is the graph obtained in a standard way from countably many copies of the tree \mathcal{T} and π is a certain subgroup of $Aut(\mathbb{ZT})$. Since the important paper by Webb [W] was published, many results concerning the tree classes have been obtained. (See [Be], [E3], [E4], [ES] and [O1].) In the present paper, assuming that k is a perfect field, we determine all the tree classes, not the possibilities of them, completely. The following should be the final result in this nature.

Theorem A. Let k be a perfect field. Then the tree class of a connected component of $\Gamma_s(kG)$ is one of the following: A_n , $\tilde{A}_{1,2}$, A_∞ , \tilde{B}_3 , B_∞ , D_∞ , or A_∞^∞ . Moreover, each of the above in fact occurs. Furthermore, the following hold. Here D is a defect group of the block to which the modules in Γ belong.

(i) B_{∞} occurs only when D is dihedral.

(ii) D_{∞} occurs only when D is semidihedral. ([E3], [E4])

(iii) A_{∞}^{∞} occurs only when D is dihedral or semidihedral. ([E3], [E4])

(iv) $\tilde{A}_{1,2}$ or \tilde{B}_3 occurs only when D is a four group. ([Be], [ES])

For the notation of the tree classes, we follow 2.30 of [B]. In particular,

 $\tilde{A}_{1,2}: \stackrel{(2,2)}{\longrightarrow} \cdot, \quad \tilde{B}_3: \stackrel{(1,2)}{\longrightarrow} \cdot \longrightarrow \cdot \stackrel{(2,1)}{\longrightarrow} \cdot, \quad B_{\infty}: \stackrel{(1,2)}{\longrightarrow} \cdot \longrightarrow \cdot \longrightarrow \cdots$

Received May 27, 1999.

Revised June 16, 2000.