Geometry of cuspidal sextics and their dual curves

Mutsuo Oka

§1. Introduction

Let C be a given irreducible plane curve of degree n defined by $f(x, y)=0$ where $f(x, y)$ is an irreducible polynomial. C is called a torus curve of type (p, q) if $p, q \mid n$ and $f(x, y)$ is written as $f(x, y)=$ $f_{n / p}(x, y)^{p}+f_{n / q}(x, y)^{q}$ for some polynomials $f_{n / p}, f_{n / q}$ of degree n / p and n / q respectively. This terminology is due to Kulikov, [K2]. Torus curves have been studied by many authors ([Z], [O1], [K2], [D], T$]$).

In the process of studying Zariski pairs in the moduli of plane curves of degree 6 with 3 cusps of type $y^{4}-x^{3}=0$, we have observed that there exist two irreducible components $\mathcal{N}_{3,1} / P S L(3, \mathbf{C})$ and $\mathcal{N}_{3,2} / \operatorname{PSL}(3, \mathbf{C})$ which corresponds to torus curves and non-torus curves respectively (Lemma 25). Their dual curves are sextics with six cusps and three nodes. Starting from this observation, we study the moduli space of sextic with 6 cusps and 3 nodes which we denote by \mathcal{M} and the moduli of their dual curves. It turns out that \mathcal{M} has a beautiful symmetry. The "regular part" (=Plücker curves) of \mathcal{M} is stable by the dual curve operation and the moduli of $3(3,4)$-cuspidal sextics \mathcal{N}_{3} is on the "boundary" of \mathcal{M} in a nice way (Theorem 18). By the dual operation, this moduli is isomorphic to a "singular" stratum \mathcal{M}_{3} of \mathcal{M}, which consists of 6 cuspidal 3 nodal sextics with 3 flexes of order 2. The moduli space \mathcal{M} is a disjoint union of torus curves and non-torus curves. The generic Alexander polynomial $\Delta_{C}(t)$ of $\mathbf{P}^{2}-C$ is determined by the type of C. Namely if C is a torus curve, $\Delta_{C}(t)=t^{2}-t+1$ and $\pi_{1}\left(\mathbf{P}^{2}-C\right)=\mathbf{Z}_{2} * \mathbf{Z}_{3}$, while for non-torus curve $C, \Delta_{C}(t)=1$. Moreover we show that the dual curve C^{*} is a torus curve if and only if C is a torus curve. This is striking, as it implies also that the topology of the complement is preserved by the dual operation for a torus curve in \mathcal{M}.

[^0]
[^0]: Received August 3,1998
 Revised January 18, 1999
 1991 Mathematics Subject Classification. 14H10,14H30.

