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Introduction 

Let (V, x) be a ( complex) n-dimensional isolated singularity. Given 
a Hermitian metric on V\ { x}, say ds 2 , the r-th £ 2 cohomology group of 
V at x is defined as the inductive limit of the £ 2 de Rham cohomology 
groups H[2) (U\ { x }, ds2 ), where U runs through the neighbourhoods of 

x. Recently, L. Saper [10] established a remarkable result that there 
exist Kahler metrics on V\ { x }, complete near x, for which the r-th 
£ 2 cohomology groups of V at x are zero whenever r ~ n. It implies 
an important fact that the intersection cohomology group of a Kahler 
variety with isolated singularities carries a canonical Hodge structure. 
Relying on Saper's result, the author could show that the £ 2 cohomology 
vanishing as above is also true with respect to the restriction of the 
euclidean metric associated to any holomorphic embedding (V, x) ~ 
( cN, 0) ( cf. [7]). The purpose of the present article is to complement 
these works by giving a self-contained version of the latter work. Namely 
we shall first establish an abstract vanishing theorem as a consequence 
of a new £ 2 estimate with respect to a certain family of metrics and 
weights which seems to be of interest in itself. Then we shall proceed 
to apply it to prove a vanishing theorem of Saper type with respect to 
a certain class of complete Kahler metrics which is actually wider than 
Saper's ones. Hopefully our method will be available to investigate the 
£ 2 cohomology of spaces with non-isolated singularities. Next we shall 
give a new proof of our previous result mentioned above. The argument 
here is essentially the same except that we do not appeal to the existence 
of a projective variety containing (V, x) and tried to make the argument 
more transparent. Therefore some part of the proof will be only sketchy. 
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