Advanced Studies in Pure Mathematics 17, 1989 Algebraic Number Theory — in honor of K. Iwasawa pp. 457-462

On Sinnott's Proof of the Vanishing of the Iwasawa Invariant μ_p

Lawrence C. Washington

To my teacher, Professor Iwasawa, on his seventieth birthday

In [3], W. Sinnott gave a new proof of the result of B. Ferrero and the present author [1] that the Iwasawa invariant μ_p vanishes for cyclotomic \mathbb{Z}_p -extensions of abelian number fields. The original proof was based on Iwasawa's construction of *p*-adic *L*-functions [2] and also used the concept of *p*-adic normal numbers. Sinnott replaced the results on normal numbers with a purely algebraic independence result (Lemma 2 below), which enabled him to work in the context of *p*-adic measures and distributions and to prove that (approximately) the μ -invariant of a rational function equals the μ -invariant of its Γ -transform. In the present note, we show that Sinnott's proof can be translated back into the language of Iwasawa power series. It is amusing to note that the step involving the Γ -transform, while not very difficult to begin with, is now replaced by the even simpler observation that if a prime divides the coefficients of a polynomial then it still divides them after a permutation of the exponents.

We first introduce the standard notation (see [4, p. 386] for more details): p is a prime; q = 4 if p = 2 and q = p if p is odd; χ is an odd Dirichlet character of conductor f, where f is assumed to be of the form d or qd with (d, p) = 1 (i.e., χ is a character of the first kind); $q_n = dqp^n$; $i(a) = -\log_p(a)/\log_p(1+q_0)$ for $a \in \mathbb{Z}_p$, where \log_p is the p-adic logarithm; $\mathcal{O} = \mathbb{Z}_p[\chi(1), \chi(2), \cdots]$; (π) is the prime of \mathcal{O} ; $\Lambda = \mathcal{O}[T]$; K = field of fractions of \mathcal{O} ; α runs through the $\phi(q)$ -th (2nd or (p-1)-st) roots of unity in \mathbb{Z}_p ; $\langle a \rangle$ is defined for $a \in \mathbb{Z}_p^{\times}$ by $a = \omega(a) \langle a \rangle$, where ω is the Teichmüller character; $\{y\}$ is the fractional part of $y \in \mathbb{Q}$; $\omega_n(T) = (1+T)^{p^n} - 1$; and

$$B(y) = (1+q_0)\{y\} - \{(1+q_0)y\} - \frac{q_0}{2}.$$

Received December 24, 1987.

Revised April 25, 1988.

Research supported in part by N.S.F. and the Max-Planck-Institut für Mathematik, Bonn.