Advanced Studies in Pure Mathematics 17, 1989
Algebraic Number Theory - in honor of K. Iwasawa pp. 457-462

On Sinnott's Proof of the Vanishing of the Iwasawa Invariant μ_{p}

Lawrence C. Washington

To my teacher, Professor Iwasawa, on his seventieth birthday

In [3], W. Sinnott gave a new proof of the result of B. Ferrero and the present author [1] that the Iwasawa invariant μ_{p} vanishes for cyclotomic \mathbb{Z}_{p}-extensions of abelian number fields. The original proof was based on Iwasawa's construction of p-adic L-functions [2] and also used the concept of p-adic normal numbers. Sinnott replaced the results on normal numbers with a purely algebraic independence result (Lemma 2 below), which enabled him to work in the context of p-adic measures and distributions and to prove that (approximately) the μ-invariant of a rational function equals the μ-invariant of its Γ-transform. In the present note, we show that Sinnott's proof can be translated back into the language of Iwasawa power series. It is amusing to note that the step involving the Γ-transform, while not very difficult to begin with, is now replaced by the even simpler observation that if a prime divides the coefficients of a polynomial then it still divides them after a permutation of the exponents.

We first introduce the standard notation (see [4, p. 386] for more details) : p is a prime; $q=4$ if $p=2$ and $q=p$ if p is odd; χ is an odd Dirichlet character of conductor f, where f is assumed to be of the form d or $q d$ with $(d, p)=1$ (i.e., χ is a character of the first kind); $q_{n}=d q p^{n}$; $i(a)=-\log _{p}(a) / \log _{p}\left(1+q_{0}\right)$ for $a \in \mathbb{Z}_{p}$, where $\log _{p}$ is the p-adic logarithm; $\mathcal{O}=\mathbb{Z}_{p}[\chi(1), \chi(2), \cdots] ;(\pi)$ is the prime of $\left.\mathcal{O} ; \Lambda=\mathcal{O} \llbracket T\right] ; K=$ field of fractions of $\mathcal{O} ; \alpha$ runs through the $\phi(q)$-th (2nd or $(p-1)$-st) roots of unity in $\mathbb{Z}_{p} ;\langle a\rangle$ is defined for $a \in \mathbb{Z}_{p}^{\times}$by $a=\omega(a)\langle a\rangle$, where ω is the Teichmüller character; $\{y\}$ is the fractional part of $y \in \mathbb{Q} ; \omega_{n}(T)=(1+T)^{p^{n}}-1$; and

$$
B(y)=\left(1+q_{0}\right)\{\mathrm{y}\}-\left\{\left(1+q_{0}\right) y\right\}-\frac{q_{0}}{2} .
$$

Received December 24, 1987.
Revised April 25, 1988.
Research supported in part by N.S.F. and the Max-Planck-Institut für Mathematik, Bonn.

