Tate-Shafarevich Groups of Elliptic Curves with Complex Multiplication

Karl Rubin

Dedicated to Professor Kenkichi Iwasawa on his 70th birthday

If E is an elliptic curve defined over an imaginary quadratic field K, with complex multiplication by K, and if $L\left(E_{I K}, 1\right) \neq 0$, then the TateShafarevich group $\amalg\left(E_{/ \mathrm{K}}\right)$ is finite. The proof of this statement in [8] is complicated by the necessity of studying the \mathfrak{p}-part of $\amalg\left(E_{/ K}\right)$ for all primes \mathfrak{p} of K. In fact the above theorem grew out of an earlier weaker result which, because it ignores a finite set of "bad" primes of K, is proved much more simply.

The purpose of the present paper is to give the original proof of this simpler result, Theorem 1 below. The proof contains the important ideas of the proof of Theorem A of [8], but is much clearer because many of the technical difficulties of [8] do not arise. Later in this section we will use Theorem 1 to obtain three examples of finite Tate-Shafarevich groups. This paper should be viewed as the predecessor of [8], and one would be well-advised to read this paper first.

Suppose E is an elliptic curve defined over an imaginary quadratic field $K \subset C$, with complex multiplication by the ring of integers \mathcal{O} of K. Fix an \mathcal{O}-generator $\Omega \in C^{\times}$of the period lattice of a minimal model of E, let ψ denote the Hecke character of K attached to $E, L(\psi, s)$ the corresponding Hecke L-function, and $L\left(E_{/ K}, s\right)$ the L-function of E over K. Then $L\left(E_{/ K}, s\right)=L(\psi, s) L(\bar{\psi}, s), L(\bar{\psi}, 1) / \Omega \in K$, and $L\left(E_{/ K}, 1\right)=0 \Leftrightarrow L(\psi, 1)$ $=0 \Leftrightarrow L(\bar{\psi}, 1)=0$.

Theorem 1. Let E be an elliptic curve defined over an imaginary quadratic field K, with complex multiplication by K. Let \mathfrak{p} be a prime of K where E has good reduction, and which does not divide $\#\left(\mathcal{O}^{\times}\right)$. If $\#\left(E(K)_{\text {torsion }}\right) L(\bar{\psi}, 1) / \Omega \not \equiv 0(\bmod \mathfrak{p})$, then the \mathfrak{p}-part of $\amalg\left(E_{/ \bar{k}}\right)$ is zero. In particular if $L(\bar{\psi}, 1) \neq 0$ then the \mathfrak{p}-part of $\amalg\left(E_{/ K}\right)$ is zero for all but finitely

[^0]
[^0]: Received December 1, 1987.
 This work was carried out while the author was an Alfred P. Sloan Fellow at MSRI, Berkeley. Additional support was provided by NSF grant DMS-8501937.

