Advanced Studies in Pure Mathematics 14, 1988 Representations of Lie Groups, Kyoto, Hiroshima, 1986 pp. 541-559

Closure Relations for Orbits on Affine Symmetric Spaces under the Action of Minimal Parabolic Subgroups

Toshihiko Matsuki

§1. Introduction

Let G be a connected Lie group, σ an involutive automorphism of G and H a subgroup of G such that $G_0^{\sigma} \subset H \subset G^{\sigma}$ where $G^{\sigma} = \{x \in G | \sigma x = x\}$ and G_0^{σ} is the connected component of G^{σ} containing the identity. Then the factor space $H \setminus G$ is called an affine symmetric space. We assume that G is real semisimple throughout this paper.

Let P^0 be a minimal parabolic subgroup of G. Then a parametrization of the double coset decomposition $H \setminus G/P^0$ is given in [1] and [2]. In this paper we study the closure relations for the double coset decomposition.

The result of this paper can be stated as follows. Let g be the Lie algebra of G and σ the automorphism of g induced from the automorphism σ of G. Let θ be a Cartan involution of g such that $\sigma\theta = \theta\sigma$. Let $g=\mathfrak{h}+\mathfrak{q}$ (resp. $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$) be the decomposition of g into the +1 and -1 eigenspaces for σ (resp. θ).

Let x be an arbitrary element of G. By Theorem 1 in [1], there exists an $h \in G_0^{\sigma}$ such that $P = hxP^0x^{-1}h^{-1}$ can be written as

$$P = P(\mathfrak{a}, \Sigma^+) = Z_G(\mathfrak{a}) \exp \mathfrak{n}$$

where α is a σ -stable maximal abelian subspace of \mathfrak{p} , Σ^+ is a positive system of the root system Σ of the pair (\mathfrak{g}, α), $Z_{\mathfrak{g}}(\alpha)$ is the centralizer of α in Gand $\mathfrak{n} = \sum_{\alpha \in \Sigma^+} \mathfrak{g}(\alpha; \alpha)$. ($\mathfrak{g}(\alpha; \alpha) = \{X \in \mathfrak{g} | [Y, X] = \alpha(Y)X$ for all $Y \in \alpha\}$.) Since $(HXP^0)^{\mathfrak{c}t} = (HP)^{\mathfrak{c}t}hx$, we have only to study $(HP)^{\mathfrak{c}t}$.

Let K be the analytic subgroup of G for \sharp and put $H^a = (K \cap H)$. exp $(\mathfrak{p} \cap \mathfrak{q})$. Then $H^a \setminus G$ is called the affine symmetric space associated to $H \setminus G$ ([1]). For a subset S of G, we put $S^{op} = \{y \in G \mid (H^a y P)^{cl} \cap S \neq \emptyset\}$. Then it is clear that S^{op} is the minimal H^a -P invariant open subset of G containing S since the number of H^a -P double cosets in G is finite. For each root α in Σ , put $\alpha^{\alpha} = \{Y \in \alpha \mid \alpha(Y) = 0\}$, put $L_{\alpha} = Z_G(\alpha^{\alpha})$ and choose an element w_{α} of $N_K(\alpha)$ such that Ad $(w_{\alpha})|_{\alpha}$ is the reflection with respect to α .

Received April 6, 1987.