Advanced Studies in Pure Mathematics 9, 1986 Homotopy Theory and Related Topics pp. 259–271

On *p*-Sylow Subgroups of Groups of Self Homotopy Equivalences of Sphere Bundles over Spheres

Mamoru Mimura and Norichika Sawashita

Dedicated to Professor Nobuo Shimada on his 60th birthday

Introduction

The set $\mathscr{E}(X)$ of homotopy classes of homotopy equivalences of a space X to itself forms a group under composition of maps. This group $\mathscr{E}(X)$ has been investigated by several authors (e.g. [2], [7] and [12]).

In the case where X is an S^m -bundle over S^n , the group $\mathscr{E}(X)$ has been investigated for $X = V_{n,2}$ and $W_{n,2}$ by Y. Nomura [10] and for X with 3 < m+1 < n < 2m-2 by S. Sasao [13], where $V_{n,2} = O(n)/O(n-2)$ and $W_{n,2} = U(n)/U(n-2)$ are the real and complex Stiefel manifolds respectively.

In this note, we study the *p*-Sylow subgroup of $\mathscr{E}(X)$ for an S^m bundle X over S^n with a mod p H-structure such that $i_{(p)}: S^m_{(p)} \to X_{(p)}$ is an H-map, where m and n are odd integers, $S^m_{(p)}$ and $X_{(p)}$ are localizations of S^m and X at $\{p\}$ respectively and $i_{(p)}$ is the localization of the inclusion $i: S^m \subset X$ at $\{p\}$. Our main result is as follows:

Theorem 4.5. Let *m* and *n* be odd integers such that $3 \leq m < n-1$, and let $S^m \xrightarrow{i} X \xrightarrow{q} S^n$ be an S^m -bundle over S^n . Let *p* be an odd prime. If $S^m_{(p)}$ and $X_{(p)}$ are *H*-spaces such that $i_{(p)}: S^m_{(p)} \to X_{(p)}$ is an *H*-map, then the group $\mathscr{E}(X)$ is a finite group with a unique *p*-Sylow subgroup \widetilde{S}_p given by the semi direct product

$$\widetilde{S}_{p} \cong \pi_{m+n}(X;p) \times \pi_{n}(S^{m};p),$$

where $\alpha T \beta = \alpha + i \circ \beta \circ q \circ \alpha$ for $\alpha \in \pi_{m+n}(X; p)$ and $\beta \in \pi_n(S^m; p)$.

In Section 1, we determine the *p*-Sylow subgroup of $\mathscr{E}(S^m \cup e^n)$ (Proposition 1.3). In Section 2, we define a homomorphism $j^1 \colon \mathscr{E}(X) \to \mathscr{E}(K)$ and study the *p*-Sylow subgroup of Im j^1 (Lemma 2.7). In Section

Received January 30, 1985.