Cohomology mod p of the 4-connected Cover of the Classifying Space of Simple Lie Groups

Masana Harada and Akira Kono

§ 0. Introduction

Let G be a compact, connected, simply connected, simple Lie group and BG its classifying space. A prime p is called good (for G) (resp. exceptional (for G)) if $H_*(G; Z)$ is p-torsion free (resp. not p-torsion free). As is well known BG is 3-connected and $\pi_4(BG) = H_4(GB; Z) = H^4(BG; Z) = Z$ (cf. [3]). Represent a generator of $H^4(BG; Z)$ by a map $Q'': BG \rightarrow K(Z, 4)$ and denote its homotopy fibre by $B\widetilde{G}$. The purpose of this paper is to determine $H^*(B\widetilde{G}; F_p)$ for any odd prime p.

Consider the following pull back diagram:

$$K(\mathbf{Z}, 3) \xrightarrow{\pi'} B\widetilde{T} \xrightarrow{Q'} BT$$

$$\downarrow i \qquad \qquad \downarrow \bar{i}$$

$$K(\mathbf{Z}, 3) \xrightarrow{\pi} B\widetilde{G} \xrightarrow{Q''} BG$$

where T is a maximal torus, i and \bar{i} are the maps induced by the inclusion. Note that $\bar{i}^*: H^4(BG; Z) \to H^4(BT; Z)$ is a monomorphism and $\operatorname{Im} \bar{i}^* = H^4(BT; Z)^{W(G)}$ where W(G) is the Weyl group of G. Therefore $Q' = \bar{i}^* Q''$ is a generator of $H^4(BT; Z)^{W(G)}$. Denote the mod p reduction of Q' by Q. Since $H^*(BT; F_p) \cong S(H_2(BT, F_p)^*)$, where S denotes the symmetric algebra, we may consider that Q is a quadratic form. Let h = h(G, p) be the codimension of a Q-isotropic subspace of maximum dimension.

As is well known that

$$H^*(K(\mathbf{Z},3); \mathbf{F}_p) \cong S(\beta P_k u_3; k \ge 1) \otimes E(P_k u_3; k \ge 0)$$

where E denotes the exterior algebra, $P_k = \mathscr{P}^{p^{k-1}} \cdots \mathscr{P}^1$ and u_3 is a generator of $H^3(K(\mathbf{Z},3); F_p)$ (= \mathbf{Z}/p). Denote the subalgebra generated by $\{\beta P_k u_s; k \geq 1\} \cup \{P_k u_s; k \geq j\}$ by R_j . Then the main results of this paper are the following:

Received January 24, 1985.