Advanced Studies in Pure Mathematics 2, 1983 Galois Groups and their Representations pp. 69-88

On Generalized Hasse-Witt Invariants of an Algebraic Curve

Shōichi Nakajima

§1. Introduction

Let k be an algebraically closed field of characteristic p > 0, and C a connected complete non-singular curve over k. Denote by $\pi_1(C)$ the Grothendieck fundamental group of C. (cf. [3] exp. V. The group $\pi_1(C)$ is isomorphic to Gal (K_{ur}/K) , where K is the function field of C and K_{ur} means the maximal unramified extension field of K.) Concerning this group $\pi_1(C)$, we shall generalize the result of Katsurada [7] (Theorem 1 in Section 2) and then prove another related theorem (Theorem 2 in Section 4).

To begin with, a short account will be given on the known facts about the structure of the group $\pi_1(C)$. For a non-negative integer g, put $\Gamma_g = \langle a_1, \dots, a_g, b_1, \dots, b_g | a_1 b_1 a_1^{-1} b_1^{-1} \dots a_g b_g a_g^{-1} b_g^{-1} = 1 \rangle$, the group generated by 2g elements $a_1, \dots, a_g, b_1, \dots, b_g$ with one defining relation $a_1 b_1 a_1^{-1} b_1^{-1} \dots a_g b_g a_g^{-1} b_g^{-1} = 1$. ($\Gamma_g = \{1\}$ if g = 0.) The group Γ_g is nothing but the topological fundamental group of a Riemann surface of genus g. Further, let $\hat{\Gamma}_g$ be the pro-finite completion of Γ_g , i.e. $\hat{\Gamma}_g = \lim_{i \to \infty} (\Gamma_g/\Gamma)$ where Γ ranges over all normal subgroups of Γ_g with finite indices. Then, we can state a fundamental result of Grothendieck about $\pi_1(C)$ ([3] exp. X): If the genus of C equals g, then there exists a surjective continuous homomorphism $\varphi: \hat{\Gamma}_g \to \pi_1(C)$ with the following property:

(*) Ker φ is contained in every open normal subgroup N of $\hat{\Gamma}_g$ such that $[\hat{\Gamma}_g: N]$ is prime to p.

The surjectivity of φ says that to each finite étale covering $C' \rightarrow C$ there corresponds a unique open subgroup N of $\hat{\Gamma}_g$. (The correspondence is given by $N = \varphi^{-1}(\pi_1(C'))$.) And the property (*) ensures that each open normal subgroup N of $\hat{\Gamma}_g$ with $[\hat{\Gamma}_g: N]$ prime to p can be obtained as $\varphi^{-1}(\pi_1(C'))$ for some connected étale covering $C' \rightarrow C$. But how about the groups N for which $[\hat{\Gamma}_g: N]$ is divisible by p? Or, we naturally ask a

Received December 7, 1982.