On Generalized Hasse-Witt Invariants of an Algebraic Curve

Shōichi Nakajima

§ 1. Introduction

Let k be an algebraically closed field of characteristic $p>0$, and C a connected complete non-singular curve over k. Denote by $\pi_{1}(C)$ the Grothendieck fundamental group of C. (cf. [3] exp. V. The group $\pi_{1}(C)$ is isomorphic to $\mathrm{Gal}\left(K_{\mathrm{ur}} / K\right)$, where K is the function field of C and K_{ur} means the maximal unramified extension field of K.) Concerning this group $\pi_{1}(C)$, we shall generalize the result of Katsurada [7] (Theorem 1 in Section 2) and then prove another related theorem (Theorem 2 in Section 4).

To begin with, a short account will be given on the known facts about the structure of the group $\pi_{1}(C)$. For a non-negative integer g, put $\Gamma_{g}=\left\langle a_{1}, \cdots, a_{g}, b_{1}, \cdots, b_{g} \mid a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} \cdots a_{g} b_{g} a_{g}^{-1} b_{g}^{-1}=1\right\rangle$, the group generated by $2 g$ elements $a_{1}, \cdots, a_{g}, b_{1}, \cdots, b_{g}$ with one defining relation $a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} \cdots a_{g} b_{g} a_{g}^{-1} b_{g}^{-1}=1 . \quad\left(\Gamma_{g}=\{1\}\right.$ if $g=0$.) The group Γ_{g} is nothing but the topological fundamental group of a Riemann surface of genus g. Further, let $\hat{\Gamma}_{g}$ be the pro-finite completion of Γ_{g}, i.e. $\hat{\Gamma}_{g}=\lim _{\longleftarrow}\left(\Gamma_{g} / \Gamma\right)$ where Γ ranges over all normal subgroups of Γ_{g} with finite indices. Then, we can state a fundamental result of Grothendieck about $\pi_{1}(C)$ ([3] exp. X): If the genus of C equals g, then there exists a surjective continuous homomorphism $\varphi: \hat{\Gamma}_{g} \rightarrow \pi_{1}(C)$ with the following property:

Ker φ is contained in every open normal subgroup N of $\hat{\Gamma}_{g}$ such that [$\hat{\Gamma}_{g}: N$] is prime to p.

The surjectivity of φ says that to each finite étale covering $C^{\prime} \rightarrow C$ there corresponds a unique open subgroup N of $\hat{\Gamma}_{g}$. (The correspondence is given by $N=\varphi^{-1}\left(\pi_{1}\left(C^{\prime}\right)\right)$.) And the property ($*$) ensures that each open normal subgroup N of $\hat{\Gamma}_{g}$ with [$\hat{\Gamma}_{g}: N$] prime to p can be obtained as $\varphi^{-1}\left(\pi_{1}\left(C^{\prime}\right)\right)$ for some connected étale covering $C^{\prime} \rightarrow C$. But how about the groups N for which $\left[\hat{\Gamma}_{g}: N\right.$] is divisible by p ? Or, we naturally ask a

