Chapter 3

Arrangements

3.1 Basic Constructions

Let \mathcal{A} be an arrangement in V and let $L = L(\mathcal{A})$ be the set of nonempty intersections of elements of \mathcal{A} . An element $X \in L$ is called an **edge** of \mathcal{A} . Define a **partial order** on L by $X \leq Y \iff Y \subseteq X$. Note that this is reverse inclusion. Thus V is the unique minimal element of L. (Ordinary inclusion also gives a partial order preferred by many authors.) Define a **rank** function on L by $r(X) = \operatorname{codim} X$. Thus r(V) = 0, r(H) = 1 for $H \in \mathcal{A}$. Recall that the rank of \mathcal{A} , $r(\mathcal{A})$, is the maximal number of linearly independent hyperplanes in \mathcal{A} . It is also the maximal rank of any element in $L(\mathcal{A})$. We call \mathcal{A} central if $\cap_{H \in \mathcal{A}} H \neq \emptyset$, where $T = \cap_{H \in \mathcal{A}} H$ is called the center. The ℓ -arrangement \mathcal{A} is called **essential** if it has an element of rank ℓ . Equivalently, \mathcal{A} contains ℓ linearly independent hyperplanes.

Let $N = N(\mathcal{A}) = \bigcup_{H \in \mathcal{A}} H$ be the divisor of \mathcal{A} and let $M = M(\mathcal{A}) = V - N(\mathcal{A})$ be the complement of \mathcal{A} . Recall that V has coordinates u_1, \ldots, u_ℓ and we defined a linear polynomial α_H with ker $\alpha_H = H$ for each hyperplane $H \in \mathcal{A}$. The product $Q(\mathcal{A}) = \prod_{H \in \mathcal{A}} \alpha_H$ is a **defining polynomial** for \mathcal{A} . It is unique up to a constant. The next four constructions will be used later.

Coning [OT1, 1.15]: The affine ℓ -arrangement \mathcal{A} gives rise to a central $(\ell+1)$ -arrangement $\mathbf{c}\mathcal{A}$, called the **cone** over \mathcal{A} . Let \tilde{Q} be the homogenized $Q(\mathcal{A})$ with respect to the new variable u_0 . Then $Q(\mathbf{c}\mathcal{A}) = u_0\tilde{Q}$ and $|\mathbf{c}\mathcal{A}| = |\mathcal{A}| + 1$. There is a natural embedding of \mathcal{A} in $\mathbf{c}\mathcal{A}$ in the subspace $u_0 = 1$. Note that this embedding does not intersect $\ker u_0 = H_{\infty}$, the "infinite" hyperplane. Here $M(\mathbf{c}\mathcal{A}) \simeq M(\mathcal{A}) \times \mathbb{C}^*$.

Projective closure: Embed $V = \mathbb{C}^{\ell}$ in complex projective space \mathbb{CP}^{ℓ} and call the complement of V the infinite hyperplane, \bar{H}_{∞} . Let \bar{H} be the projective closure of H and write $\bar{A} = \bigcup_{H \in \mathcal{A}} \bar{H}$. We call $\mathcal{A}_{\infty} = \bar{\mathcal{A}} \cup \{\bar{H}_{\infty}\}$ the **projective closure** of \mathcal{A} . It is an arrangement in \mathbb{CP}^{ℓ} . Let $u_0, u_1, \ldots, u_{\ell}$ be projective coordinates in \mathbb{CP}^{ℓ} so that $\bar{H}_{\infty} = \ker u_0$. Then $\bar{H} = \ker \tilde{\alpha}_H$ where tilde denotes the homogenized