Advanced Studies in Pure Mathematics 6, 1985 Algebraic Groups and Related Topics pp. 207-229

Some Generalization of Asai's Result for Classical Groups

Toshiaki Shoji

Introduction

Let G be a connected reductive algebraic group defined over a finite field \mathbf{F}_q , $F:G \to G$ be the corresponding Frobenius map and for each positive integer m, G^{F^m} be the group of F^m -fixed points in G. Let G^{F^m}/\sim_F be the set of F-twisted conjugacy classes of G^{F^m} . In the case where m=1, we simply express it as G^F/\sim . A bijection $N_{F^m/F}: G^F/\sim \to G^{F^m}/\sim_F$ is defined by attaching $x=F^m(a)a^{-1}$ to $\hat{x}=a^{-1}F(a)$, where $x \in G^F$, $\hat{x} \in G^{F^m}$ and $a \in G$. We denote by $C(G^{F^m}/\sim_F)$ the space of $\overline{\mathbf{Q}}_i$ -valued functions on the set G^{F^m}/\sim_F . Then we get the induced map $N^*_{F^m/F}: C(G^{F^m}/\sim_F) \to C(G^F/\sim)$.

Let \tilde{G}^{F^m} be the semidirect product of G^{F^m} with the cyclic group of order *m* with generator σ , where σ acts on G^{F^m} by $\sigma g \sigma^{-1} = F(g)$. For each representation $\tilde{\rho}$ of \tilde{G}^{F^m} , we denote by $[\tilde{\rho}]$ the restriction on $G^{F^m}\sigma$ of the character of $\tilde{\rho}$, which we regard as an element of $C(G^{F^m}/\sim_F)$ under the natural bijection $G^{F^m}/\sim_F \simeq G^{F^m}\sigma/\sim$ (~ means the conjugation under \tilde{G}^{F^m}).

Assume that the center of G is connected. By Lusztig [11], the set $\mathscr{E}(G^{F^m})$ of isomorphism classes of irreducible representations of G^{F^m} over $\overline{\mathbf{Q}}_i$ is partitioned into the disjoint union of subsets $\mathscr{E}(G^{F^m}, (s))$ where (s) runs over all F^m -stable semisimple conjugacy classes in the dual group G^* of G. Moreover, by [11], taking $s \in G^{*F^m}$, we have a canonical bijection

(0.1)
$$\mathscr{E}(G^{F^m}, (s)) \simeq \mathscr{E}(Z_{G^*}(s)^{*F^m}, (1)).$$

F acts naturally on $\mathscr{E}(G^{F^m})$ and for each *F*-stable class (*s*), *F* stabilizes $\mathscr{E}(G^{F^m}, (s))$. Let $\mathscr{E}(G^{F^m}, (s))^F$ be the set of *F*-stable representations in $\mathscr{E}(G^{F^m}, (s))$. We denote by $C^{(s)}(G^{F^m}/\sim_F)$ the subspace of $C(G^{F^m}/\sim_F)$ generated by $[\tilde{\rho}]$, where $\tilde{\rho}$ runs over all the irreducible representations of \tilde{G}^{F^m} whose restriction to G^{F^m} lies in $\mathscr{E}(G^{F^m}, (s))^F$. Thus, if m=1, $C^{(s)}(G^F/\sim)$ is the subspace of $C(G^F/\sim)$ generated by various elements in $\mathscr{E}(G^F, (s))$.

Received April 23, 1984.