SEQUENTIAL CONFIDENCE INTERVALS

WITH BETA PROTECTION IN ONE-PARAMETER FAMILIES*

Robert A. Wijsman

University of Illinois at Urbana-Champaign

A sequential confidence interval (CI) for a real parameter γ of the form $[L,\infty)$ is proposed, based on a consistent and asymptotically normal sequence T_1, T_2, \ldots of real valued statistics. This CI is required to satisfy the coverage probability $P_{\gamma}\{L \leq \gamma\} > 1 - \alpha$ for every γ , and to provide beta protection at $\phi(\gamma)$: $P_{\gamma}\{L \leq \phi(\gamma)\} \leq \beta$ for every γ , where α , β , and the function $\phi(\gamma) < \gamma$ are given. It is shown that this can be achieved (under certain regularity assumptions) with a stopping time of the form N = least integer $n > r + c^2 \tau^2(T_n)$ and a terminal decision $L = \rho(T_N)$, in which the functions τ and ρ depend on ϕ and the asymptotic variance σ^2 . Asymptotic values are derived for $P_{\gamma}\{L > \gamma\}$ and $P_{\gamma}\{L < \phi(\gamma)\}$ as γ varies over values for which $\tau(\gamma) + \infty$.

1. Introduction.

Let T_1 , T_2 ,... be a sequence of real valued random variables whose joint distribution P_{γ} depends on a parameter γ with values in an interval Γ . Suppose a one-sided confidence interval (CI) for γ is desired of the form $[L,\infty]$, in which $L = L(T_1,T_2,...)$, that satisfies the two conditions

^{*} Research supported by the National Science Foundation Grants Nos. MCS 82-01771 and DMS 85-03321.

AMS 1980 subject classifications. Primary 62L12; Secondary 62F25, 62F35. Key words and phrases. Equivariant interval estimator, uniform asymptotic normality, uniform Anscombe theorem.