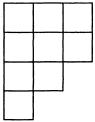
Chapter 7. Representation Theory of the Symmetric Group

We have already built three irreducible representations of the symmetric group: the trivial, alternating and n-1 dimensional representations in Chapter 2. In this chapter we build the remaining representations and develop some of their properties.

To motivate the general construction, consider the space X of the unordered pairs $\{i,j\}$ of cardinality $\binom{n}{2}$. The symmetric group acts on these pairs by $\pi\{i,j\} = \{\pi(i),\pi(j)\}$. The permutation representation generated by this action can be described as an $\binom{n}{2}$ dimensional vector space spanned by basis vectors $e_{\{i,j\}}$. This space splits into three irreducibles: A one-dimensional trivial representation is spanned by $\overline{v} = \sum e_{\{i,j\}}$. An n-1 dimensional space is spanned by $v_i = \sum_j e_{\{i,j\}} - c\overline{v}, 1 \le i \le n$, with c chosen so v_i is orthogonal to \overline{v} . The complement of these two spaces is also an irreducible representation. A direct argument for these assertions is given at the end of Section A. The arguments generalize. The following treatment follows the first few sections of James (1978) quite closely. Chapter 7 in James and Kerber (1981) is another presentation.

A. CONSTRUCTION OF THE IRREDUCIBLE REPRESENTATIONS OF THE SYMMETRIC GROUP.

There are various definitions relating to diagrams, tableaux, and tabloids. Let $\lambda = (\lambda_1, \ldots, \lambda_r)$ be a partition of n. Thus, $\lambda_1 \geq \lambda_2 \ldots \geq \lambda_r$ and $\lambda_1 + \ldots + \lambda_r = n$. The diagram of λ is an ordered set of boxes with λ_i boxes in row i. If $\lambda = (3,3,2,1)$, the diagram is



If λ and μ are partitions of n we say λ dominates μ , and write $\lambda \underline{\triangleright} \mu$, provided that $\lambda_1 \geq \mu_1, \lambda_1 + \lambda_2 \geq \mu_1 + \mu_2, \ldots$, etc. This partial order is widely used in various areas of mathematics. It is sometimes called the order of majorization. There is a book length treatment of this order by Marshall and Olkin (1979). They show that $\lambda \underline{\triangleright} \mu$ if and only if we can move from the diagram of λ to the diagram of μ by moving blocks from the right hand edge upward, one at a time, such that at each stage the resulting configuration is the diagram of a partition. Thus, $(4,2) \triangleright (3,3)$, but (3,3), and (4,1,1) are not comparable. See Hazewinkel and Martin (1983) for many novel applications of the order.