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This paper has three parts. The first give an expository review of a model from stochas-
tic population biology. This model leads to eigenvalue inequalities for random evolutions.
The second gives a proof by Charles M. Newman of one of these inequalities. The third
gives conjectures and questions. Some of these have been previously stated; most are new.

1. Introduction. The growth of a population in a random environment can be modeled

in a simple way by a stochastic process called a random evolution. Bounds on the growth

rate of a population in a random environment can be expressed in terms of certain eigen-

values. The first purpose of this paper is to describe informally how a population can be

modelled by a random evolution and why eigenvalue inequalities arise naturally (section

2). The main inequalities to be discussed have been proved by Cohen, Friedland, Kato and

Kelly (1982). I shall henceforth refer to this paper as CFKK. The second purpose of this

paper is to give a proof (section 3) of one of these inequalities that was discovered by

Charles M. Newman of the University of Arizona during my talk at the symposium on In-

equalities in Statistics and Probability. The third purpose of this paper is to state conjec-

tures, open problems and questions concerning further inequalities (section 4).

2. Populations in Random Environments and Eigenvalue Inequalities. Suppose one

has a vat of bacteria sitting in a laboratory. Suppose the number of bacteria is large enough

so that there is no discomfort in taking N(f), the number of bacteria at (real scalar) time

ί, to be a real variable rather than strictly integer valued. Suppose also that the number of

bacteria is small compared to the number of bacteria that the nutrient medium in the vat

can support, or that the medium is continuously refreshed. If the division cycles of the bac-

teria are unsynchronized, then the simplest model of the population is to suppose that the

number of fissions that occur per unit time is directly proportional to the number of bacteria

in the vat. Thus, for some real constant by

dN(t) /dt = bN(t) for t ^ 0, N(0) = No.

It is well known, even among biologists, that the solution of this equation is

In this deterministic model, the long-run growth rate b may be computed from an observed

trajectory N(t) of the size of the population from the formula

UmΓ1\ogN(ή = b.

The left side of this equation is referred to as a Liapunov characteristic number of the pro-

cess.
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