INEQUALITIES ON EXPECTATIONS BASED ON THE KNOWLEDGE OF MULTIVARIATE MOMENTS ${ }^{1}$

By ANDRÁS PRÉKOPA

Rutgers University

The paper deals with discrete moment problems where the possible values of a random vector form a known finite set. First, some earlier results concerning the one dimensional discrete moment problem are summarized. Then, restricting the discussion to the two-dimensional case, for the sake of simplicity, two different discrete moment problems are formulated: (a) the known moments are those where the exponents of the random variables are chosen between 0 and some upper bounds; (b) the sum of the exponents is less than or equal to a given number. The bounds that can be obtained by our technique include bounds for probabilities and expectation.

1. Introduction

The one-dimensional discrete moment problem can be formulated in the following manner. Given a random variable ξ, the possible values of which are known to be $z_{0}<z_{1}<\cdots<z_{n}$ and a function $f(z), z \in\left\{z_{0}, z_{1}, \ldots, z_{n}\right\}$. We want to give lower and upper bounds for $E[f(\xi)]$, based on the knowledge of the moments $\mu_{k}=E\left[\xi^{k}\right], k=1,2, \ldots, m$, while the probability distribution of ξ is unknown.

Introducing the notations $p_{i}=P\left\{\xi=z_{i}\right\}, f_{i}=f\left(z_{i}\right), i=0,1, \ldots, n$, $\mu_{0}=1$, we obtain the above mentioned bounds by solving the linear programming problems

$$
\begin{equation*}
\min (\max) \sum_{i=0}^{n} f_{i} p_{i} \tag{1.1}
\end{equation*}
$$

subject to

$$
\begin{aligned}
\sum_{i=0}^{n} z_{i}^{k} p_{i} & =\mu_{k}, \\
p_{i} & \geq 0, \quad i=0,1, \ldots, m \\
& i=1,2, \ldots, n
\end{aligned}
$$

[^0]
[^0]: ${ }^{1}$ Research supported by National Science Foundation Grant No. DMS-9005159.
 AMS 1991 subject classifications. Primary: 60E99, 26B25, 26D15; Secondary: 41A05, 41A63, 65D05.

 Key words and phrases. Discrete moment problem, multivariate moment inequalities, interpolation, linear programming.

