A GROUP ACTION ON COVARIANCES WITH APPLICATIONS TO THE COMPARISON OF LINEAR NORMAL EXPERIMENTS¹

By MORRIS L. EATON

University of Minnesota

Consider a linear normal experiment with a fixed regression subspace and a known covariance matrix Σ . A classical method for comparing such experiments involves the covariance matrix of the Gauss-Markov estimator of the regression coefficients, say $V(\Sigma)$. We introduce a group action on covariance matrices and show that a maximal invariant is $V(\Sigma)$. The concavity of $V(\Sigma)$ in the Loewner ordering shows that $V(\Sigma)$ is monotone in the natural group induced ordering on covariances. In addition, the group structure is used to provide an easy proof of a main theorem in the comparison of linear normal experiments. A related problem concerns the behavior of $V(\Sigma)$ as a function of the elements of Σ . Some results related to positive dependence ideas are presented via examples.

1. Introduction

In simple linear model problems, the covariance matrix of the Gauss-Markov estimator of the vector of regression coefficients is often used to choose between competing linear models with the same regression coefficients. Given an $n \times k$ design matrix X of rank k with $1 \leq k < n$ and a known non-singular covariance matrix Σ , let $\mathcal{E}(X, \Sigma)$ denote the experiment with an observation vector Y whose distribution is multivariate normal $N(X\beta, \Sigma)$ where β is the k-vector of regression coefficients. The reason for the assumption that k < n is explained at the end of Section 4.

Now, the covariance matrix of $\hat{\beta}$, the Gauss Markov estimator of β , is

(1.1)
$$\operatorname{Cov}(\widehat{\beta}) = (X'\Sigma^{-1}X)^{-1}.$$

For two experiments with the same $\beta \in \mathbb{R}^k$, say $\mathcal{E}(X_i, \Sigma_i)$, i = 1, 2, it is well known that experiment $\mathcal{E}(X_1, \Sigma_1)$ is sufficient for $\mathcal{E}(X_2, \Sigma_2)$ iff

(1.2)
$$(X_1' \Sigma_1^{-1} X_1)^{-1} \le (X_2' \Sigma_2^{-1} X_2)^{-1}$$

¹Work supported in part by National Science Foundation Grant DMS-89-22607.

AMS 1991 subject classifications. Primary 62B15; Secondary 62J05.

Key words and phrases. Comparison of experiments, positive correlation, linear normal experiments, group induced orderings.