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NONSQUARE "DOUBLY STOCHASTIC" MATRICES
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An n x m non-negative matrix with uniform row sum m and column sum
n is called a "doubly stochastic" matrix. When n = m, such a matrix is a scale
multiple of a doubly stochastic matrix in its classical sense. Garrett BirkhofF
proved a theorem characterizing all classical extremal doubly stochastic matrices
as permutation matrices. We will discuss the characterization of the extremal
matrices for nonsquare "doubly stochastic" matrices in the spirit of BirkhofFs
theorem.

An n x m matrix M = (rnij) is called a doubly stochastic matrix (with
uniform marginals) of size n x m if

m

(uniform row marginals) \_\ rnij — m f°r i = 1,2, ...,n. (1)

n

(uniform column marginals) \_]'mij = n for j = 1,2, ...,m. (2)
ι=l

(positivity) rriij > 0 for i = l,2,...,n and j = l,2,...,m. (3)

For example,

/ I 3 0 0\ / 3 1 0 0\
Mi = 1 0 3 0 and M 2 = 0 2 2 0

l 0 0 3/ \0 0 1 3/

(4)

are two doubly stochastic matrices of size 3 x 4 .

For integers m, n > 1, let MnXm denote the set of all doubly stochastic
matrices of size n x m. Then it is easy to see that ΛΊ n X m is a convex set (of
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