
Chapter III
Σ{ Predicates of Reals

This chapter concentrates on basis theorems for Σ} and Π} predicates. In addition
hyperarithmetic quantifiers are classified, and closure points of Π?, and monotonic
Π}, inductive definitions are computed.

1. Basis Theorems

Let B be a set of functions and &> a family of predicates of the form P(f). B is said to
be a basis for & if for each P(f)e0>,

A basis B for 9 is of maximal interest when the complexity of a typical member of B
is minimal relative to that of a typical member of 0>. Basis theorems permeate the
literature of higher recursion theory, possibly because they clarify the scope of
certain quantifiers. Thus Kleene's basis theorem implies that the scope of an
existential function quantifier, when applied to a Σ{ predicate, can be reduced to
those functions recursive in Kleene's 0. A result of Shoenfield states that the Δ\
reals are a basis for the Σ2 predicates. The Kleene and Shoenfield arguments have
in common the analysis of quantifiers by ordinals as in Section 5.1. In general basis
theorems are proved by exploiting an appropriate assignment of ordinals to finite
partial functions.

Every Σ} predicate P(f) can be put in the form

(Eg)(x)K(/(x), g(x))

for some recursive R. Therefore finding a solution/of P(f) is equivalent to finding
a solution </, g} of (x)K(/(x), g(x)). Thus the basis problem for Σ} predicates is the
same as that for Π? predicates. The recursive predicates have a trivial basis
(Exercise 1.5), but the next result indicates the surprising complexity introduced by
a single universal number quantifier.

1.1 Theorem (Kleene). The hyperarithmetic functions are not a basis for the Π j
predicates.
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Proof. Let P(/)_be fφ HYP. P(f) is Σ{ by Corollary 1.4(ii).Π. Put P(f) in the
form (Έg)(x)R(f(x), g(x)). Then (x).R(/(x), #(;*;)) has no hyperarithmetic solution

1.2 Branches of Trees. According to Theorem 1.1 there is a recursive predicate R
such that no hyperarithmetic/satisfies (x)R(f(x))9 but some/does. R corresponds
to a recursive tree TR with the property that/is a solution of (x)R(f(x)) if and only
if / is an infinite branch of TR. A tree, by definition, is a partial ordering with a
greatest element and such that every pair of incomparables has no lower bound. TR

is the partial ordering of sequence jiumbers (as in subsection 5.1.1) consisting
of those f(x) that satisfy (i)i<xR(f(ί))' (Visualize the tree upside down the
greatest element is on top and the branches go down.) / satisfies (x)R(f(x))
iff 7(0) > / ( l ) >/(2) > . . . is an infinite branch.

The next theorem says that a recursive tree with an infinite branch must have one
recursive in Kleene's 0. If it still seems hard to believe that such a tree need not
have a hyperarithmetic branch, pay attention to the difference between finite
branching and infinite branching. According to Exercise 1.7, a recursive tree with
finite branching and an infinite branch has one recursive in 0'. Later it will be
shown that a recursive tree with less than 2ω branches has only hyperarithmetic
branches.

1.3 Theorem (Kleene). The functions recursive in 0 are a basis for the Σ\
predicates.

Proof. Let R be recursive, and assume (x)R(f(x)) holds for some/ Define Q(s) to
be: s is a sequence number in the field of TR (defined in subsection 1.2) and the part
of TR below s is not wellfounded. Recall: > orders TR as in 5.1.1.

Q(s) is Σ}, hence recursive in 0 by Theorem 5.4.1. Define/recursively in Q so that

& ^(s) = n + l & f(n) > s].

/is welldefined because

(s)(Et)lQ(s)^Q(t) & s>t].

In short the step-by-step definition of/avoids all wellfounded subtrees of TR. D

The recursive ordinals play a significant, if hidden, role in the proof of Kleene's
basis theorem. For each 5 in the field of TR, let TS

R be the part of TR below s. If TS

R is
wellfounded, then it has an ordinal height denoted by \TR\ defined in subsection
4.2.1. Let \s\ be | TS

R\ when TS

R is wellfounded. Since R is recursive, \s\, when defined,
is a recursive ordinal. Q(s) is equivalent to: \s\ is not defined. The infinite path /
defined in the proof of Theorem 1.2 is the "leftmost" branch that omits all s such
that \s\ is defined. According to Exercise 1.8, the "leftmost" branch has the same
hyperdegree as Kleene's O or is hyperarithmetic. H. Friedman and D. A. Martin
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have independently shown: if a recursive tree has a nonhyperarithmetic branch,
then it has one in each hyperdegree greater than or equal to that of Kleene's O.

1.4 Theorem (Gandy). {f\f<hO} is a basis for the Σ{ predicates.

Proof. Suppose P{f) is Σ\ and (Ef)P(f). Then

(1) P(f) & g£kf

is Σ} according to subsection 5.6.II.
(1) has a solution since only countably many g's are hyperarithmetic in each/ By

Theorem 1.3, (1) has a solution </ g} <TO. Thus

P(f) & f<hO & g<hO & g£hf

Hence f<hO. D

1.5 Corollary The Σ\ set {f\ω{ = ω^κ} is a basis for the Σ\ predicates.

Proof. Suppose P{f) is Σ\ and (Eϊ)P(f). By Theorem 1.4 there is an / such that
P(f) and / < h 0. Corollary 7.7.II implies ω{ = ω^κ. D

References to model theory are in order. The proof of Theorem 1.3 is analogous to
a Henkin-style construction of a countable, consistent set of sentences. In the
setting of first order logic, a Henkin construction can be regarded as a step-by-step
development of an infinite path through a tree with finite branching. The infinite
branching allowed in the proof of Theorem 1.2 corresponds to sentences of
countably infinite length having the form of a disjunction. In the same vein the
finite proofs of first order logic correspond to infinite proofs encoded by hyper-
arithmetic reals. This vein will be mined further later, but before leaving it, observe
that Corollary 1.5 has the appearance of a type-omitting result. The type omitted is:
x is a non-recursive ordinal recursive in /

Another basis result of the type-omitting sort will be proved later in this Chapter.
If states: if AφHΎP, then {f\A %hf) is a basis for the Σ} predicates. Still another
will come up in Chapter IV. Theorem 2.2.1 V states: if a Π} set has positive measure,
then it has a hyperarithmetic member.

1.6-1.9 Exercises

1.6. Let F be the set of all/unequal to 0 on only finitely many coordinates. Show F
is a basis for the recursive predicates.

1.7. Suppose T is a recursive tree with finite branching and an infinite branch.
Show T has an infinite branch recursive in 0'. (0' is the complete recursively
enumerable subset of ω.)
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1.8. Suppose T is a recursive tree with infinite branching. Let / and g be infinite
branches./is said to be to the left of g if for some x,/(x) = g(x) and/(x) < g(x).
Assume T has an infinite branch. Show the leftmost branch of T is either
hyperarithmetic or has the same hyperdegree as Kleene's 0. Show T has a
branch of hyperdegree less than that of 0.

1.9. (H. Friedman). Use Corollary 1.4 to show there is a model M of set theory such
that the ordinals of M are a proper end extension of the recursive ordinals, and
such that sup {δ\δ eM & δ is standard} = ω^κ. (Thus M omits ω^κ.)

2. Unique Notations for Ordinals

A is said to be a set of unique notations for the constructive ordinals if A c O and
the restriction of <o to A2 is a linear ordering whose ordertype is ω^κ. In briefs is
a branch that goes all the way through O. Clearly each constructive ordinal has just
one notation in A. It will soon be proved that there exists a Π} set Ox of unique
notations. O1 will be useful in the analysis of hyperarithmetic quantifiers in the next
section, and in the definitions of the basic concepts of metarecursion theory in
Part B.

2.1 Lemma (Kleene). There exists a recursive linear ordering with an infinite
descending sequence, but no hyperarithmetic such sequence.

Proof. As noted in subsection 1.2, there is a recursive R such that no hyper-
arithmetic / satisfies (x)R(f(x)) but some / does. TR, the partial ordering of
sequence numbers g(x) such that (ί)i<xR(g(x)\ is a recursive tree with an infinite
branch but no hyperarithmetic such branch. TR can be linearized by ordering
sequence numbers in the Kleene-Brouwer fashion: g(u) < KB h(v) if

(1) (i) t o t ? & (Oκ,(0(O = MOλ or
(ii) (Ek)[/c < min(tι, v) & g(k) < h(k) & (0,<k(flf(0 = M0) l

Let < R be the restriction of < KB to the sequence numbers in the field of TR. Each
solution / of (x)R(f(x)) defines an infinite descending sequence of <R according
to (l)(i). Suppose <R has a hyperarithmetic infinite descending sequence
XO>RXI >RX2 with the intent of showing (x)R(/(x)) has a hyperarithmetic
solution. Note that any set of sequence numbers of bounded length is wellordered
by <KB- Consequently the lengths of the xf's are unbounded. Hence it is safe to
assume that M(xt) is a strictly increasing function of i, since some hyperarithmetic
subsequence of the xf's must have that property. An induction on n shows

Define t(n) by μj(i)i>jL(Xi)n = (x;)J, and/(n) by (xt(n))n- 1. Then / is a hyper-
arithmetic solution of (x)R(f(x)). D
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Model theory yields another view of Lemma 2.1. Suppose M is a model of a
suitable fragment of set theory and the ordinals of M are a proper end extension of
the recursion ordinals. Thus the recursive ordinals in the sense of M include some
nonstandard ordinals as well as the standard recursive ordinals. Let δ be a
nonstandard recursive ordinal of M, and let < Λ e M b e a recursive wellordering
whose ordertype is δ. Then < R has an infinite descending sequence outside M but
not inside M. If < R had a hyperarithmetic, infinite descending sequence, then that
sequence would belong to M, since all standard recursive ordinals belong to M,
hence all standard #-sets belong to M. The next lemma computes the ordertype of
a nonstandard recursive ordinal.

2.2 Lemma. Let <R be a recursive linear ordering with an infinite descending
sequence but no hyperarithmetic such sequence.

(i) (Gandy) Let Q be the maximum, wellordered initial segment of <R. Then Q is
U\ but not Σ}, and the restriction of <Rto Q has ordertype ω^κ.

(iί) (Harrison) The ordertype of <R is ω^κ (1 + η) + γ, where η is the ordertype of
the rationals, and y is a recursive ordinal.

Proof
(i) Q is Π} since

xeQ~xe<R & ~(Ef)(n)[/(n+ 1) <*/(") <**]•

To see that Q is not Σ}, choose b in the field of <R but not in Q. Then there is an
infinite descending sequence below b and above Q. Suppose Q is Σ}. Then the Πj
relation

x<Rb & y<Rx & yφQ

can be uniformized by some Π} P(x, y) according to Theorem 2.3.Π. Let g(O) be
some x below b and above Q, and g(n +1) the unique y such that P(g(n% y). Then g
is a hyperarithmetic, infinite descending sequence in <R.

Suppose the ordertype of <R restricted to Q were less than ω^κ. Then there
would be an a e O such that for all x,

(1) xeβ<->xefield of <R & (Ef)[/is a one-one

orderpreserving map of < R into J^ ( α ) ] .

< R is the initial segment of <R below x, and Wqia) is the recursively enumerable
initial segment of <o below α, as in Theorem 3.5.1. (1) implies Q is Σ\.

If the ordertype of < R restricted to Q were greater than ω^κ, then ω^κ would be a
recursive ordinal.

(ii) Let x, y belong to the field of <R. Call x ~ y if [x, y] or [y, x] is a closed
interval of <R that contains no infinite descending sequences. ~ is a Π} equi-
valence relation that partitions <R into intervals. Each such interval is Π}, since a
typical interval is {y\y ~ x}.
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Each interval has an R-least member. Otherwise

(M)(EV)[M ~ x->ϋ ~ x & v<Rύ].

Π} uniformization (Theorem 2.3.1) makes it possible to construe t; as a hyper-
arithmetic function of u, and so yields a hyperarithmetic, infinite descending
sequence in <R.

Since {y\y ~ x} has a least member, it follows from the definition of ~ that the
restriction of <R to {y\y ~ x} is a wellordering. To determine the ordertype of
{y\y ~ χ}> consider Ux — {y\x <Ry}. If Ux contains no infinite descending se-
quence, then the ordertype of Ux, hence of {y\y ~ x} is a recursive ordinal. If Ux

contains an infinite descending sequence, then (i) implies that the ordertype of the
maximal, wellfounded initial segment of UX9 hence of {y\y ~ x}, is ω^κ. Note there
is at most one {y\y ~ x} whose ordertype is less than ω^κ.

If x <Ry and x φ y, then there is a z such that x <Rz <Ry, x ̂  z and z ̂  y;
otherwise ω^ κ would be a recursive ordinal. D

2.3 Proposition. There exists a recursive g such that for all e: if We^O and the
restriction of <o to We is linear, then

g(e)eθ & (a)laeWe^ a <og(e)l

Proof. Let Wn

e = {u\(Ey)y<nT{e, u, y)}. Then We = u {Wn

e\n < ω}, and each Wn

e

is finite. Let q be the recursive function of Theorem 3.5.1. Define

(u,v}eW* by <u,υ)eWqi2v).

Then W* is recursively enumerable, and the restriction of W* to O2 is <o.
Let θ(e9 i) be a partial recursive function with the following property. If θ(e, i) is

defined for all i < n, and if the restriction of W* to

(1) W"eυ{θ{e,i)\i<n}υ{l}

is linear, then θ(e, ή) is defined and equal to 2m, where m is the greatest member of
(1) with respect to W*.

There is a recursive function s such that {s(e)}(i) ~ θ(e, i) for all e and i. Define
g(e) to be 3 5s(e\

Suppose We^O and the restriction of < o to We is linear. By induction
on i, θ(e, ί) is defined and belongs to O, and the restriction of <o to
Weu{θ(e, j)\j <i}v{lj is linear. In addition if aeWe9 then a<oθ(e9 ί)

for some i, and so a <og(e) Π

2.4 Theorem (Feferman & Spector 1962). There exists a H\ set O1 of unique
notations for the constructive ordinals, that isθγ ^ 0 and the restriction of <oto0ί

is linear.
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Proof. As in Gandy 1960. Let <R be the recursive linear ordering of Lemma 2.1.
< R has a maximum wellordered initial segment Q of ordertype ω^κ according to
Lemma 2.2(i). The function g of Proposition 2.3 will be used to imbed Q in O. The
range of the imbedding will be cofinal in Ox.

There exist recursive functions j and / such that

and

Fix c so that {/(c)} ~ {c}. Let / be {c}. Then

^(cx) = {f{a)\a<Rx}, and

An induction on < R shows

lx,yeQ & x<Ry]^f(χ)<of(y)

The range of/ has gaps easily filled. Define

aeO1^(Ex)lxeQ & aeWp(f(x))\

where p is the recursive function of Theorem 3.5.1. D

The proof of Theorem 2.4 given above is quite different from the one presented
by Feferman and Spector 1962. Their approach is recursion theoretic in appear-
ance and model theoretic in reality. They study 0*, a nonstandard version of O.
The elements of O* are notations for ordertypes of recursive linear orderings
without hyperarithmetic, infinite descending sequences. They show O* is a proper
end extension of O (cf. Exercise 2.6). Then for each eeO* — 0, the set

{a\a <o*e & aeO}

is a Πj set of unique notations.

2.5-2.7 Exercises

2.5. Simplify the proof of Proposition 2.3.

2.6. (Feferman & Spector 1962). Let A(X) be the arithmetic closure condition of
subsection 2.1.1 used to define <o. Define <o* to be n{X|<l, 2}eX
& A(X) & XeHYP}. Show < o * is a proper end extension of <o. Let
eeO* — O. Show {a\a <o*e & aeO} is a Π{ set of unique notations.



3. Hyperarithmetic Quantifiers 59

2.7. Let M be a model of set theory in which the integers are standard and ω^κ is
not. Let δ be a nonstandard recursive ordinal. What is the ordertype of δ in the
real world?

3. Hyperarithmetic Quantifiers

Sometime ago A. Mostowski conjectured that each Π} predicate P(x) could be put
in the form

(1) (Ef)feliYPA(fx)

for some arithmetic A. Earlier Kleene had shown that (1) is Σj for every arithmetic
A. Consequently Mostowski's conjecture states that with respect to arithmetic
predicates, the effect of applying an universal function quantifier is the same as
applying an existential hyperarithmetic function quantifier. The conjecture be-
comes plausible in the light of model theory. Let 3F be a sentence of 3?ω^κ, ω, an
extension of first order logic, in which quantifier prefixes are finite in length but
conjunctions and disjunctions can be countably infinite. Assume 3F is encoded by a
hyperarithmetic real. Thus 3F is built up in the same manner as a Borel set of
recursive ordinal rank and hyperarithmetic complexity. According to an appro-
priate completeness theorem, (2) and (3) are equivalent.

(2) 3F is true in every countable structure.

(3) $F has a proof in i?ω^κ, ω.

On its face (2) is a Π} predicate of 3F. (3) is clearly existential. Less clear is that
proofs in 5£ω^κ, ω are hyperarithmetically encodable. Perhaps it helps to note that
finite sentences have finite proofs, and to recall claims made above that hyper-
arithmetic is analogous to finite.

3.1 Lemma (Kleene). If A(x,f) is arithmetic, then (Ef) / e H Y P A(x,f) is Π}.

Proof. An immediate consequence of the proof of Corollary 1.4(ii).Π. D

The proof of Mostowski's conjecture, or the Spector-Gandy theorem as it is now
called, is based on properties of nonstandard end extensions of the hyper-
arithmetic hierarchy expressed by the next two lemmas.

3.2 Lemma (Enderton & Putnam). There exists a recursive function g such that for
alle:if3'5ee0and

(n)LH{e}{n)<τXl

thenH3.5e={g(e)}x".
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Proof. Let H(a9 X) be the U°2 predicate of Theorem 4.2.Π. Define P(a, z, X) by
{z}x is total &H(a,{y\{z}x(y)=l}).

If aeO, then P(a,z,X) is equivalent to Ha = {z}x. P(a,z,X) is Π^, hence
recursive in X" uniformly in X. In other words, for some e0,

P(a,z,X)~{eo}
x"(a9z)

for all a, z and X. Let φ(e, y9 X) be the partial function defined by

{μzP{{e}{{y\),z,X)}x{{y)0\

For some eί9 φ(e,y,X) ~ {^i}* (e, y) for all e, 3; and X. Let # be a recursive
function such that

{g(e)}x"{y)*φ(e9y9X).

Suppose 3 5 β e 0 and H{e)in) <TX for all n. Then

&

3.3 Lemma. Suppose {Λn\n < ω} is a sequence of sets such that A'n + 1 < τAnfor
all n. Then X < τΛ0for all hyper arithmetic X.

Proof. An induction on <o shows {n)[Hb <τAn] for all bsO.
If b is 2m, then Hm<τAn + 1 by induction, and so iί2m <τA'n+1 <τAn.
Suppose b is 3 5e. Then by Lemma 3.2,

The existence of a sequence {^Jn < ω} such that A^+ 1 <τAn for all w is a
consequence of the fact that OφΣ\ (cf. exercise 3.6). Model theory also provides
such sequences. Let M be a nonstandard model of set theory in which the integers
are standard and ωfκ is not. If δ is a nonstandard recursive ordinal, then there is an
infinite descending sequence (outside M) δ = δo> δί> δ2> . . . of non-
standard recursive ordinals.

The associated if-sets satisfy the hypothesis of Lemma 3.3. Hf

δn+ι <τHδn, since
H-sets are always separated by at least one jump.

Assume < is a linear ordering of a subset of ω. X is said to be a Turing jump
hierarchy on < if

(1) (m)(n)lm<n^(Xym<τ(X)nl

If (1) holds, < is said to support X. Note that (1) is an arithmetic statement about <
and X. Not much is known about those linear orderings that support Turing jump
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hierarchies. Obviously every recursive wellordering does. H. Friedman has found a
recursive linear ordering of ordertype ω^κ(l +η) that does not, although another
recursive linear ordering of the same ordertype does.

The Spector-Gandy theorem is a consequence of the next lemma, which charac-
terizes recursive wellorderings by an unexpected appeal to definability notions.

3.4 Lemma (Spector, Gandy). Let < be a recursive linear ordering. < is a
wellordering iff < supports some hyperarithmetic Turing jump hierarchy.

Proof. If < is a wellordering, then it supports some proper initial segment of the
iί-sets.

Suppose < supports some hyperarithmetic X and has an infinite descending
sequence mo>mί> . . . . Then (X)f

m + ί <τ(X)mi f°Γ a ^ U a n < l Lemma 3.3 implies
X is recursive in (X)m. But then

x'<τ(xymι<τ(x)mo<τx. D

3.5 Theorem (Spector 1959, Gandy 1960). Each Π} predicate P(x) can be put in the
form

{EY)YeliYPA(Y,x)

for some arithmetic A.

Proof According to Proposition 5.3 of Chapter I, there is a partial ordering S(x) of
sequence numbers, recursive in x uniformly, such that

P(x)<r+S(x) is wellfounded.

S(x) can be linearized as in the proof of Lemma 2.1. Let SKB(x) be the
Kleene-Brouwer ordering of S(x). Then

(1) P(x)^SKB(x) is wellordered.

By Lemma 3.4 the right side of (1) is equivalent to: SKB(x) supports some
hyperarithmetic, Turing jump hierarchy. D

3.6-3.12 Exercises

3.6. Find a sequence {An\n<ω} of sets such that A'n + ί<τAn for all n. (Cf.
Exercise 2.6.)

3.7. Find a sequence {An\n < ω} of sets such that An + \ =τAn for all n.

3.8. (Enderton & Putnam). For each n >0, let X{n + 1) be (Xin))\ and let Xi0) be
X. Suppose Xin)<τY for all n. Let Xiω) be {<u, v}\ueX(v)}. Show
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3.9. Let M be a nonstandard model of set theory in which the integers are
standard and ω^κ is not. Suppose δ is a nonstandard recursive ordinal. Let
δ = <50 > δx > δ2 > . . . be an infinite descending sequence not in M. Show

3.10. Formulate and prove: < is a wellordering iff < supports a Turing jump
hierarchy X such that X is hyperarithmetic in <.

3.11. Show (EB)[£e2 ω & BeHYP & R(B,x, 7)] is Π} if R is Π}.

3.12. Suppose P{X, Y) is Δ} and (X)l(EY)P(X, Y)-^(E1 Y)P(X, Y)l
Show X(EY)P(X, Y)isA{.

3.13. Show each Π} predicate P(X) can be put in the form

(EΎ)Y^XA(X, Y)

for some arithmetic A by relativizing 3.5 to X.

4. The Ramified Analytic Hierarchy

The ramified analytic hierarchy was introduced by Kleene, possibly to show the
hyperarithmetic sets could be defined by an iterative process couched in the
language of analysis. The length of the process is of course ω^κ, and a typical stage
adds all sets (of numbers) that have analytical definitions over the universe of sets
already defined. The equivalence of ramified analytic and hyperarithmetic defin-
ability is closely related to the existence of upward persistent Δ} definitions of H-
sets, as in Corollary 4.4.Π. The equivalence was clarified by Kreisel, who showed
HYP is the least ω-model of the Δ} comprehension axiom schema.

The following account of the Kleene-Kreisel results is influenced by the needs of
Chapter IV, which studies various sideways extensions, generic and otherwise, of
the ramified analytic hierarchy.

One caution must be observed. Gandy and Putnam have extended the ramified
analytic hierarchy to its natural endpoint, β0, an ordinal far greater than ω^κ. Any
reference to RAH in this book is a reference to RAH through the recursive ordinals
only.

4.1. The Language J£?(ω^κ, 2Γ\ Feferman 1965 introduced the language
5£ (ω^κ, ϊF) to study Cohen-generic extensions of the ramified analytic hierarchy
(equivalent to the hyperarithmetic hierarchy), as in Chapter IV below. 3Γ is a set
constant that denotes a subset of ω. The other primitive symbols of if (ω^κ, ϊF)
are: x, y, z, . . . (number variables); 0,1,2,... (numerals); Xβ, Yβ, Zβ,. . . (set
variables of rank β for each β<ω^κ); X, Y,Z, . . . (unranked set variables);
+ (plus), (times) and ' (successor); and e (membership).

The number theoretic terms are: numerals, number variables, t + s, t s, and t',
where t and s are number theoretic terms.
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The atomic formulas are t = s and teU, where t and s are number theoretic
terms and U is !Γ or a set variable.

Formulas are built up from atomic formulas, propositional connectives, and
quantifiers over all three types of variables. A formula 3F is ranked if all of its set
variables are ranked. The ordinal rank of a ranked !F is the least α such that β < α
for all Xβ occurring freely in 3F and β < α for all bound Xβ in # \

4.2. Gδdel Numbers. An assignment of Gόdel numbers to formulas is needed to
classify relations between formulas such as truth or forcing. The Gόdel numbering
is routine save for the complication caused by the use of recursive ordinals as
superscripts of ranked variables. Since the correspondence between primitive
symbols and their Gόdel numbers should be as effective as possible, it follows that
the Gόdel number of ranked variable Xβ should resemble a notation for β. Let Ox

be the Π} set of unique notations for the recursive ordinals provided by Theorem
2.4. Then the Gόdel number of Xβ is <2,α>, where aeOx and \a\ = β. The
remaining primitive symbols are numbered routinely with the result that:

(1) The set of Gόdel numbers of formulas of ^{ω^κ, ZΓ) is Ώ\.
(2) For each α < ω^κ the set of Gόdel numbers of ranked formulas of rank less than

α is recursively enumerable uniformly in the unique notation for α in 0 ^

(2) is a consequence of Theorem 3.5(i).I, since the restriction of < o to Ox is linear.

4.3. The Structure ΛT(ω?κ, Γ). Assume T^ω. The structure J^{ω^κ, T) consists
of those sets ramified analytic in T via ordinals less than ω^κ. It will be of interest
chiefly when ω^κ = ω[, and will prove useful in the study of such Γ's.

A simultaneous recursion on β < ω^κ defines the structure Jl{β,T) and truth
in u {Jί(a9 T)\a < β) for sentences of rank at most β.

(1) Suppose & is a sentence of rank at most β. Thus if Xa is a bound variable of
#", then α < /?. JMs true in u {Jΐ(oc, Γ)|α < β} if & is true when & is interpreted
as T; Xa, yα,. . . are restricted to Ji{<x, T); x, y, . . . range over ω; and + , * , ' , the
numerals and e have their usual meaning.

(2) Jί{β,T) is the collection of all sets defined as follows. Let ^(x) be a ranked
formula of rank at most β whose only free variable is x. Define x^(x) to be the set
of all n such that

<S(ή) is true in u {J/(a, Γ)|α < β).

x^(x) is a typical member of Ji{β, T).
Define Jl{ωQf, T) to be u { ^ ( α , Γ)|α < ωf 1}. Finally define Jί{ω^,T)

V&{& is true in J/(ω^κ, T)) for an arbitrary sentence & of i f(ω^ κ , 3Γ) by
allowing the unranked set variables to range over Jl{<uff, T) and interpreting the
remaining symbols as in (1).

A sentence of if (ω^κ, &") is said to be Σ} (or existential) if it is ranked, or of the
form (EX^ . . . (EXn)^ for some formula ^ with no unranked bound variables.
Lemma 4.5 says that «^(ω?κ, T) 1= #*, restricted to Σ\ &\ is Π}. This means that
the predicate, e is the Gόdel number of an existential sentence true in Jί{ω^, T\ is
Π} with e and T as its free variables.
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4.4 Full Ordinal Rank. The notion of ordinal rank defined in subsection 4.1 is not
fine enough for some of the inductions that lie ahead.

Suppose !F is a ranked sentence. The full ordinal rank of & is a function

r: [ - l , ω c κ ) - > ω

such that for each /Jeω^κ, r(β) is the number of occurrences of (EX**), (Xβ\
(EY*), . . . in <F9 and such that r(—1) is the number of occurrences of
(x), (Ey), (j/), . . . in 3F. Clearly r is 0 for all but finitely many arguments. Suppose
r0 and rx are full ordinal ranks. r0 is said to be less than rx (in symbols r0 < r t ) if
there is a j8e[ — 1, ω^κ) such that

(1) ro(β)<ri(β) & (α)β>/f(ro(α) = r1(α)).

If ro<rl9 then at most one /? satisfies (1), namely the greatest β such that
ro(β)<r1(β). < is a wellordering of height ω^κ.

The key property of < is the reduction of full ordinal rank occasioned by the
substitution of an appropriate set term for a bound variable. Consider a sentence of
the form (EXβ )^(Xβ). Let ^ (x) be a ranked formula of rank at most β whose only
free variable is x. The result of substituting x&(x) for Xβ in ^(Xβ) is denoted
by ^(x^{x)\ and is accomplished by substituting &(b) for each occurrence in
&r(Xβ) of bεXβ, where b is a number theoretic term. The full ordinal rank of
P(x9(x)) is less than that of (EXβ)&(Xβ) since all the quantified set variables
occurring in &(x) have superscripts less than β.

It is often convenient to assume an arbitrary ranked sentence 3F is in prenex
normal form. The standard syntactical manipulations that put a sentence in prenex
normal form do not increase full ordinal rank.

4.5 Lemma. The predicate Jί{ω^κ, T)¥&9 restricted to Σj J^'s, is Π}.

Proof. It is enough to show Jί(of^, T) N #", restricted to ranked &% is Πj, since

is equivalent to

(Eb)[ί>601 &

The definition of Jί{ωQf, T)V3F for ranked ^ ' s is a recursion on the full ordinal
rank of 3F and logical complexity of #\ To see that the definition is Π} consider the
following Σ} closure conditions with Theorem 1.6(i). in mind. (0 is true and 1 is
false.)

(1) < J 2 Γ , 0 > G X & <^,0>6X-><J2 Γ &
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(1) is a Σ} closure condition because the intended meaning of (1) is:

(1*) If c and d are Gόdel numbers of ranked sentences, both of which are true, then
their conjunction is true.

Since the set of Gόdel numbers of ranked sentence is Π J, it follows that (1 *) is Σ}.

The same applies to (2)-{\2).

(2) <#", l ) e I V < ^ , l>eX-<#- & 9,

(3)

(4)

(5)

(6)

(7) beθx &

&

(8) beθί & l(^(x&(x)l 1 >eX whenever rank of

In (9)-(12) s and t are closed number theoretic terms, and val(s) is the numerical

value of s.

(9)

(10)

(11)

(12)

Let A(X, T) be the conjunction of (1)-(12). A(X, T) is Σ}. An induction on the
full ordinal rank and logical complexity of 3F shows

(13)

A sample of the reasoning encountered in the induction is as follows. Suppose
< & & g9 0 > e l for all X such that A (X, T) holds. Suppose further there is an Xo

such that A(X0, T) and either < #", 0> or <^, 0> fails to belongs to Xo. Clause (1)
is the only clause that can require <#" & ^, 0> to be in X. Therefore
^ o - { < ^ & * , 0 ) } is an X that satisfies 4(X, T\ a contradiction. Hence
< # \ 0> and <^, 0> belong to every X satisfying A(X, T). By induction ^ & ^
is true in J((ω^9 T\ since both ^ and # are less complex than & & ^ .

(13) is a Π} definition of truth in Ji{ω^κ, T) for ranked sentences.
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4.6 Lemma. For each α < ω^κ the predicate Jί(ωcκ, T)V3F, restricted to ^ ' s of
rank less than α, is Δ} uniformly in the unique notation for α.

Proof. Let g be a recursive function such that for each b e 0 x , W (̂b) is the recursively
enumerable set of Gόdel numbers of sentences of rank less than \b\. The existence
of g was noted in subsection 4.1(2). Fix b. The predicate

m &

and its "negative",

m &

are Π} by Lemma 4.5. D

The next lemma echoes the persistence phenomenon heard in Lemma 1.6.1.

Lemma 4.7. For each hyper arithmetic set H there is a ranked formula J f (x) such
that for all T and n,

Proof There exist beθ1 and recursive function / such that

(n) = x &

by Exercise 2.10.11. The graph of/ is representable by a arithmetic formula of
if (ω^κ, T) in which Γdoes not appear.

Hb is represented by a formula developed by recursion on <o. For each a <ob
assume there is a ranked formula J^a(x) such that for all T and n,

Assume the ordinal rank of jfβ is |α| + 1. Then ^(|fc|, Γ) includes {HJα < o b } for
all T. According to Corollary 4.4.II there is a Σ\ formula, (EY)A(x, Y\ that defines
Hb in any universe containing {Ha\a<ob}. Consequently (EY^bl)A(x, Γ |fc|) defines
Hb in M(ωcf, T) for all T, and has rank |fr| + 1.

The ramified analytic hierarchy is denoted by Jί{ω^) and is defined to be

4.8 Theorem (Kleene). M(ωQf) = HYP.

Proof Lemma 4.7 implies HYP c ^jT(ω

cκ, Γ) for all Γ, hence ϊoτ T=φ.
Suppose β e J ( ω f ) . Then there is a ranked formula #(x) of J ^ ( Φ ? K , Γ ) such

that for all n,

(1)

By Lemma 4.6 the right side of (1) is Δ}, hence hyperarithmetic. D
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4.9 A{ Comprehension. The following sentence is a typical instance of G. KreiseΓs
Δj comprehension axiom scheme.

(1) (x)KEY)A(x9Y)~(Z)B(x9Z)l

A(x, Y) and B(x,Z) are arithmetic. If they contain set parameters, (1) is said to be
boldface, otherwise lightface. An ω-model N is simply any nonempty subset of 2ω.
Any sentence ^ of analysis can be interpreted in N by restricting the set variables of
9 to N and the number variables to ω. The study of ω-models of fragments of
analysis originated in proof theory, but turned out to have applications to
recursion theory as in the next lemma, a characterization of a recursion-theoretic
hierarchy as the least ω-model of some fragment of analysis.

4.10 Theorem (Kreisel). The intersection of all ω-models of Δj comprehension is a
model of Δ{ comprehension, namely HYP.

Proof HYP is an ω-model of Δj comprehension, since Theorem 3.1 implies any set
that has a Σ} definition over HYP must be Π}.

Suppose N is an ω-model of Δj comprehension to see HYP c N. As in the proof
of Lemma 4.7 it suffices to show HbeN by induction on < o. By Corollary 4.4 of
Chapter II there is a Δ{ definition of Hb that defines Hb in any ω-model containing
{Ha\a<ob}, hence in N by induction. D

4.11 Σ} Choice. The following sentence is a typical instance of KreiseΓs Σ J axiom
of choice scheme.

(1) (x)(E Y)A(x9 Y) - (EY) (x)A(x9(Y)x).

(riιe(Y)x means 2* 3me Y.) A(x, Y) is an arithmetic predicate in which set par-
ameters may occur. If none do, (1) is said to be lightface.

Long ago Kreisel asked if Δj choice followed from Δj comprehension. (A well
known consequence of the Kondo-Addison Theorem is that Σj choice follows
from Δ2 comprehension (Chapter IV).) J. Steel devised an appropriate notion of
forcing to show boldface Δj comprehension does not imply boldface Σ} choice.
Later L. Harrington showed boldface Δj comprehension does not imply lightface
Σ\ choice by means of a self-referential argument.

4.12 Proposition. Suppose N is an ω-model of Σj choice and is downward closed
under many-one reducibility. Then N is a model of Δj comprehension.

Proof Suppose

{x)l(EY)A{x9Y)~{Z)B(x9Z) ]
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is true in N for some arithmetic A and B. Then

(x)(EY)l(xE(Y)0 &

v(xφ(Y)0) &

holds in N. Σ\ choice provides a Yin N such that for all x,

(x)[(xe(7)*,o & Λ(x9(Y)xΛ)

&

Let X be {x |x6(Γ)^ 0 }. Then

D

413 Theorem (Kreisel). HYP is the least ω-model ofΣ\ choice downward closed
under many-one reducibility.

Proof. Suppose (x)(EY)yeHYP/4(x, Y) for some arithmetic A(x, Y) with hyperarith-
metic parameters. Then

(1) (x)(Ea)(Ee)[αeO & Λ(x, {*}"-)].

Let H{a,X) be the Π^ predicate of Theorem 4.2.II. Then (1) is equivalent to

(2) (x)(Ea)(Ee)[αeO & {Z)(H(a9Z)^A(x9{e}z))l

Since the matrix of (2) is Π}, Lemma 2.6.II provides hyperarithmetic functions a(x)
and e(x) such that

(x)[α(x)eθ & (Z)(H(a(x\Z)^A(x,{e(x)}zm.

The range of a(x) is bounded by some beO by Corollary 5.6.1. To be precise,
(x){a(x)eθb). It follows from Lemma 2.1.II and Theorem 1.3.II that the predicate

(3) me{e(x)}H°"

is Δ} hence hyperarithmetic. Thus there is a ΓeHYP such that me(Y)x is
equivalent to (3). Clearly (x)A(x,(Y)x). D

4.14 Σj Dependent Choice. A typical instance of Σj dependent choice is

{Y)(EZ)A{Y9Z)^(EY)(x)A((Y)x9(Y)x+1).

A(Y,Z) is an arithmetic predicate that may contain set parameters. According to
Exercise 4.22 HYP is an ω-model of Σj dependent choice. Σ\ choice is an
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immediate consequence of Σ} dependent choice; H. Friedman found an ω-model of
the former in which the latter fails.

In Chapter IV it will be shown that Jί(ω^κ, T) is a model of Σ} dependent choice
for almost all Γ, that is a set of Γ's of measure 1. At that time the equivalences of
Lemma 4.16 will prove useful. The proof of 4.16 requires the following Corollary of
Lemma 4.6.

4.15 Lemma. Suppose XeJt(ω^κ,T). Then there exists a beO such that X is
recursive in Hi. (b depends only on a ramified analytic definition of X from T.)

Proof Let G(x) be a ranked formula such that

(1) <K

for all n. By Lemma 4.6, the right side of (1) is a Δj predicate with n and Γas free
variables. According to subsection 5.6.II, there is a ft G O and an e such that the right
side of (1) is {e}Hΐ for all T D

4.16 Lemma. The following are equivalent.

(ii)
(Hi) Jί(ωψ^,T) satisfies Δ} comprehension.

Proof (i) - (ii). Lemma 4.15 implies M(ωQf, T) <= HYP(Γ). Suppose B e HYP(Γ).
Let B be Hi. \b\τ < ω^ κ . There is a formula tfh of rank \b\ + 1 such that

(1) beHl^Ji{ωc^,T)^^h{n)

for all n. (1) is proved as was Lemma 4.7 with the aid of Corollary 4.4.II, now
relativized to T.

(ii) -• (iii). HYP(Γ) is an ω-model of Δ} comprehension by a relativization to JΌf
the proof of Theorem 4.10.

(iii)->(i). By Theorem 4.10 relativized to Γ, HYP(Γ) £ M(ω? κ , T). It follows
from Lemma 4.15 that each set hyperarithmetic in Γis recursive in some Hi, where
\b\τ < ω j κ . But then there cannot be an aeθτ such that \a\τ = ω? κ . D

4.17-4.21 Exercises

4.17. Prove 4.2(1) and 4.2(2).

4.18. Show < , defined in subsection 4.4, is wellfounded.

4.19. Prove 4.13(3) is Δ}.

4.20. Show Σj dependent choice implies Σj choice.
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4.21. Prove there is an jffc of rank \b\ + 1 that satisfies (1) of 4.16.

4.22. Show HYP is an ω-model of Σ} dependent choice.

5. Kreίsel Compactness

Some of the boundedness properties of the hyperarithmetic hierarchy lead to a
compactness theorem for ω-logic discovered by G. Kreisel. His result is: if / is a
Π} set of sentences of ω-logic such that every hyperarithmetic subset of / has a
model, then / has a model. Note that "hyperarithmetic" takes the place of "finite" in
the compactness theorem for first order logic. KreiseΓs theorem paved the way for
Barwise's compactness theorem for countable Σx admissible sets. Since this is not a
book on model theory, the Kreisel result is presented in set theoretic terms.

Recall what is meant by the compactness of 2ω. 2 is the two-element space with
the discrete topology. 2ω is the product of countably many copies of 2 and has the
product topology. If / is a family of closed subsets of 2ω such that every finite
subfamily of / has a nonempty intersection, then I has a nonempty intersection.

Kreisel compactness is concerned with families of A[ subsets of 2ω. At first this
idea seems hopeless, because it is easy to find a family of Δ} subsets with the finite
intersection property whose intersection is empty. KreiseΓs insight provides a way
out. First ask that every hyperarithmetic subfamily have a nonempty intersection.
Second require that the family be Π}. As has been observed earlier, finite bears to
recursively enumerable a relation similar to that borne by hyperarithmetic to Π}.

If n is a Δj -index for a subset of 2ω, then Dn denotes the subset indexed by n.

5.1 Theorem (Kreisel). Let I be a U\ set of indices of A{ sets. Suppose

n{Dn\neH}Φ0

for every hyperarithmetic H^I. Then

n{Dn\neI}¥=0.

Proof. Suppose not. Then

(1) (X)(βy)lyel & XφDJ.

The matrix of (1), call it Q(X,y), is Π}. The proof of Theorem 2.3.II shows Q(X,y)
can be uniformized by some Π} P(X,y). The virtue of P(X,y) is its Δ}-ness, since

Hence the set J of all n such (EX)P(X,tι) is a Σ} subset of /, and

n{Dn\neJ} = 0.
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By the remark following Theorem 3.7.II, there is a hyperarithmetic H separating J
and ω-I, that is J c H c /. But then

n{DJπ6ff} = 0. D

5.2 Corollary. Lei / be a Π J seί of ranked sentences of <£(ωQf, T). Suppose for each
hyperarithmetic H ̂  /, ί/iere is α T such that Jί(ω^κ, T) is a model ofH. Then there
is a T such that Jt{ωQf, T) is a model of I.

Proof Let & be a ranked sentence. The set of all Γsuch that J f ω ^ , T) satisfies &
is Δ} by Lemma 4.6. •

5.3-5.4 Exercises

5.3. Show the matrix of 5.1(1) is Π\.

5.4. Show that Q(X,y) of the proof of Theorem 5.1 can be uniformized by some
n{P(X,y).

6. Perfect Subsets ofΣ{ Sets

The real line has the same cardinality as 2ω. Thus one version of Cantor's
continuum hypothesis is: if K is an uncountable subset of 2ω, then K has the same
cardinality as 2ω. A classical result of descriptive set theory states that the
continuum hypothesis holds for every boldface Σ} set. As might be expected the
classical result says more, namely that K contains a perfect set. By combining
the classical splitting argument with some effectiveness considerations, still more
information is obtained. For example every member of a countable Σ{ set is
hyperarithmetic.

6.1 Perfect Subsets of 2ω. P, β, R,. . . denote perfect subsets of 2ω. "Perfect" means
closed, nonempty and without isolated points, in short homeomorphic to 2ω. An
x e P is isolated if {x} = P n U for some open set U. The usual picture of 2ω is that
of a tree with binary branching. The members of 2ω correspond to the infinite
branches of the tree. An arbitrary perfect P should be pictured similarly. To make
the picture precise, let P* be the set of all sequence numbers that represent initial
segments of elements of P. Thus seP* iff Seq(s), (i)i < 2 ((s)f.e {1,2}), and

(EX) IXeP & (ί)i<m(i^X^(s)i= 1)].

The elements of P * are the branchpoints of a tree whose branches are the members
of P. The lack of isolated elements in P corresponds to the existence in P * of
incomparable extensions of each member of P*.
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P* is the standard encoding of P. Assume V ̂  ω. V encodes a perfect set if
0Φ F ^ S e q ,

(s)(Et)(Eu)[seF->ί,weF & s>t & s>u & ί |u],

(Recall s <t means s is extended by ί, and t\u means [ί ̂  w & w 3̂  ί].)

The perfect set Pv coded by F consists of all X such that arbitrarily long initial
segments of the characteristic function of X are coded by sequence numbers in V.
Note that the standard coding of Pv is recursive in V.

It is helpful to allow P9Q, R, . . . to denote both perfect sets and their standard
encodings. Thus " P is hyperarithmetic" means "the standard encoding of P is a
hyperarithmetic set of sequence numbers".

6.2 Theorem. Let K c 2ω be Σ\. Then (i)-(ίv) are equivalent,
(i) K contains a perfect set recursive in 0.

(ii) K contains a perfect set.
(in) K has a nonhy per arithmetic member,
(iv) For each hyperarithmetic real H, there is a member of K not recursive in H.

Proof. Clearly (i) -• (ii), (ii) -• (ίii) since perfect sets are uncountable, (iii) -> (iv). It
suffices to show (iv) -• (iii) and (iii) -• (i).

Assume (iii) fails with the intent of refuting (iv). The failure of (iii) implies

(1) (X)(Eb)lXeK^beO & X<τHb].

The matrix of (1) is Πj and so can be uniformized by some Π} Q(X,b) as in the
proof of Theorem 2.3.Π. Since Q defines the graph of a total function, it follows that
Q(X,b)i&Σ\:

Thus there is a Δj function b(X) such that

(X)lXeK-+b(X)eO & X <τHb(X)].

By Spector's boundedness theorem (5.6.1), there is a c e O such that

(X)l\b{X)\<\c\l.

Consequently every member of K is recursive in Hc by Theorem 4.5.Π.
Suppose K has a nonhyperarithmetic member in order to show K has a perfect

subset encodable by a real recursive in 0. It is safe to assume every element of K is
nonhyperarithmetic, since

XeK & AΓ^HYP
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is Σj by Corollary 1.4.II. The normal form of XeK is

(Eg)(x)R(X{x), g(x))

for some recursive R. X(x) is the characteristic function of X. If (x)R(X(x\ g(x))
holds, then g is said to be a witness to the fact that XeK.

The construction of the perfect P ^ K includes the construction of a witness for
each XeP. Q(s,t) is the Σ} predicate defined by:

(i) s and t are sequence numbers of the same length.
(ii) there exist X and g such that s encodes an initial segment of X, t encodes an

initial segment of g, and g witnesses XeK.

Assume Q(s,t) holds to show there exist (sί9 ί x> and <s 2, *2> s u c h that:

(iii) s > s1 ? s > s2, t > t1 and t > ί2;
(iv) β ( s i , t i ) a n d β ( s 2 , ί 2 ) ;
( V ) S x | s 2 .

<s?i, ti> and <s 2 , ί 2 ) are said to be incomparable extensions of <s, ί>. Suppose
no such exist. Then there is a unique X such that s encodes an initial segment X and
t encodes an initial segment of some witness to XeK. That unique X is hyper-
arithmetic by Theorem 1.6(ii).I, contrary to the assumption no member of K is
hyperarithmetic.

The set {< s), t*• > | i < ω & j < 2f} is defined by recursion on i. s°0 and t°0 are null.
Fix i and j . Choose <s2j"

1, ίι

2^
x > and <4;-ί i»^ijl i > to be incomparable exten-

sions of <sj, ί}>. The choices can be made effectively from 0 since 0 is a complete
Π} set (Theorem 5.4.1).

Let P be the perfect set encoded by {s)\i < ω & j < 21}. D

Countable Π} subsets of 2ω are much more complicated than their Σ} counter-
parts. Their elements tend to be scattered throughout the constructible hierarchy.
They will be discussed in Section 9.

The next result is a uniform version of part of Theorem 6.2.

6.3 Theorem. There exists a recursive function h such that: if c is an index for a Σj
predicate C(X) with no perfect set of solutions, then h(c)eθ and

Proof Let P(X9b\ clearly Π}, be

beO & [C{X)^X<τHb-].

By Theorem 6.2, (X) (Eb) P(X,b) if C(X) has no perfect set of solutions. According
to Theorem 5.4.1 relativized to X, there is a recursive / such that

P(X,b)~f(b)eOx.
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Let Q(X,b) be Π} and uniformize P(X,b) as in the proof of Theorem 6.2. An index
for Q is easily derived from one for P. Q(X,b) is Σ}, because (X)Q(X,b) and Q
defines a function. Let B be the range of that function. Corollary 3.4.II states that a
bound for B can be computed from an index for B as a Σ} set. Thus there is a
recursive function h such that h(c) bounds B. Then X < τ Hh(c) if C(X). D

The proof of Theorem 6.2 is similar to a Henkin construction of a perfect set of
countable models of a countable theory. The definition of P can be regarded as the
simultaneous construction of a continuum of models of a theory that says: "I am a
nonhyperarithmetic member of K". The Henkin approach will be applied in
Section 9 to the study of Πj sets.

7. Kreisel's Basis Theorem

Let K be a set of axioms in the language of analysis, that is the language of
subsection 1.2.1. The predicates of analysis are the analytical predicates. Let Z be a
real that occurs in every model of K. What can be said about Z? To make sense of
the question, some bound on the complexity of K is needed. From a syntactic
vantage point Z might correspond to some term in K compelled to denote Z by K
and the rules and axioms of ω-logic. From a model theoretic stance Z cannot
be omitted from any model of K. Kreisel's result is that Z must be hyperarithmetic
i f K i s Π j .

7.1 Lemma. Suppose A φ HYP, beO and K is an uncountable Σ{ set. Then for each e
there exists an uncountable Σ\K* <Ξ K such that

forallXeK*.

Proof. Since K is uncountable and HYP is Π}, it is safe to assume KnHYP = 0.

Casel: (EX)lXeK & {e}^isnot total]. Let K* be the set of all YeK such that
{e}Hb is not total. K* is Σ} by subsection 5.6.II, and uncountable by Theorem 6.2,
since K n HYP = 0 .
Case 2: Case 1 fails and

for some m and X, YeK. Choose such an m. Let K* be the set of allZeK such that
A(m) Φ {e}Hb{m). K* is uncountable by Theorem 6.2.
Case 3: Cases 1 and 2 fail. Thus there is a function h such that
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h is Σ j , hence Δj, because

h(m) = n<^(EX)(XeK & {e}"*(m) = 4

Let K* be X. D

The above lemma will make more sense after the introduction of Gandy forcing
in Section 6.1 V. That notion of forcing employs uncountable Σ} sets as forcing
conditions. The proof of Lemma 7.1 shows: if K forces {e}H° to be total and
constant, then K forces [e]H* to be hyperarithmetic.

7.2 Theorem (Kreisel). Suppose A φ HYP and K is a nonempty Σ{ set. Then for some

Proof. By Theorem 6.2 and Corollary 1.5 it is safe to assume

K n HYP = 0 , K is uncountable and

A contracting sequence Kι(i< ω) of uncountable Σ} sets, and a sequence hx of reals,
are defined simultaneously by recursion on i such that:

;
if b = (Oo, e = (Oi and beO, then Ki+ί has the
properties attributed to K* by Lemma 7.1;

ftf is an existential witness to XeK\

X, Kι and /ιf are defined above as /, Pt and gt are in the proof of Theorem 6.3.IV. (In
fact the present theorem follows directly from Lemma 7.1.III and Theorem 6.3.IV;
for each beO and e, the set of all K* provided by 7.1 is dense.) D

7.3 Corollary (Kreisel). LetKbeaU\ set of axioms in the language of analysis. IfX
belongs to every ω-model of K, then X is hyperarithmetic.

Proof. The set of all real Z such that Z encodes a countable ω-model of K is
Σ\. Π

Corollary 7.3 is a special case of a type omitting theorem for co-logic. If a Π} set
of axioms of ω-logic has a model, then it has one that omits any given nonhyper-
arithmetic type. The analogous result for first order logic is: if a countable theory
has a model, then it has one that omits any given nonprincipal type.

The recursion theorist winding his way through a Σj set is a brother to the model
theorist threading his way through a Henkin tree.
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8. Inductive Definitions

The leading role of inductive definitions in recursion theory has been emphasized
by R. Gandy for many years. Two prime examples are the definition of O in
Chapter I, and the definition of ^-recursion in Part D. Two basic cases dominate
the subject, monotonic Π} and arbitrary Π?.

8.1 Closure Ordinals. Let Γ be a map from 2ω into 2ω. Define Γα by recursion
on α.

Γo = 0 . Γ α + 1 =Γ(Γ α )uΓ α .

Γλ= u {ΓJα < λ) (/la limit).

Γ^ = u {ΓJα is an ordinal}.

Γ^ is said to be the set inductively defined by Γ. Γα is the α-th stage of the inductive
definition of Γ^. The closure ordinal of Γ, denoted by |Γ|, is the least α such that
Γ α + i=Γ α . ThusΓ00 = Γ,r(.

Γ is progressive if X c Γ(X) for all X. From now on assume all Γ's are
progressive, a harmless assumption since Γ*(X), defined by Γ ( I ) u I , is pro-
gressive and differs little from Γ.

Γ is monotonic if X ^ Y implies T(X) ^ Γ(7). Mathematical definitions tend to
be monotonic. If Γ is monotonic, then Γoo = n{X\Γ(X) = X}.

Γ is classified by classifying the predicate xeΓ(Y).

8.2 Theorem. Suppose AeΠ{ , P(X) is Π?, and P(A). Then P(H) for some
hyper arithmetic H ^ A. (Π? reflection.)

Proof. Let P(X) be (z)R(X(z)) for some recursive R. Let /be recursive so that

neA<r+f(n)eO

for all n (cf. Theorem 5.4.1). For each α < ω^κ let Aa be {n\f(ή)eθa}. Each Aa is
hyperarithmetic by Theorem 2.4.II; one of them will be the desired H.

LetP0(z,ft,c)be

CGO & |6 |< |c | & R(A]c](z)).

P0(z,b,c) is Π}. P{A) implies

(z)(b)(Ec)[beO^Po(z,b,c)l

More precisely, R(A(z)) implies R(Aa(z)) for all sufficiently large recursive α,
because only finitely many membership facts about A are needed to compute the
truth-value of R(A(z)). Po can be uniformized by some ΠJ Q according to Theorem
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2.3 of Chapter II. Thus there is a partial Π} function t(z,b) such that

A recursive subsequence [bn\n < ω) of 0 is defined by recursion. b0 = 1. The set
{t(z,bn)\z < ω} is Σ\ by proposition 1.7.1. Corollary 3.4.II makes it possible to
compute bn+1, a strict upper bound for {|t(z,6π)||z < ω|} in O. Let β9 necessarily a
recursive limit^ordinal, be the sup of the |bj's. For each z, β is the limit of ordinals δ
such that R(Aδ(z)) holds. It follows that (z)R(Aβ(zj) holds. Since β is a limit and
computations from A are finite, ~R(Aβ(z)) would imply ~ R(Aδ(z)) for all
sufficiently large δ < β. H is Aβ. D

Theorem 8.2 was presented to suggest a connection between reflection and
inductive definitions, a link developed by Aczel and Richter 1972. Reflection
phenomena are crucial in E-recursion theory as will be seen in Part D. The idea
behind 8.2, and similar theorems, is: "enumerate" A until some "finite" subset is
found that satisfies P.

8.3 Corollary (Gandy). ifT is Π?, then |Γ| < ω?κ and Γ ^ E Π } .

Proof. An effective transfinite recursion produces a recursive function/such that: if
fteO, then/(fc) is a hyperarithmetic index for Γ(ί,|. Consequently Γωcκ is Π}. It
follows from the proof of Theorem 8.2 that

for some recursive α depending on n. D

One way to remember the proof of 8.2, and hence of 8.3, is to think of it as a
downward Skolem-Lόwenheim argument. From the viewpoint of metarecursion
theory (Part B), the β of 8.2 is a fixed point of a continuous metarecursive Skolem
function. The downward Skolem idea is more evident when Γ is monotone Πj
(cf. subsection 8.7).

Γ is said to be positive if the predicate x e Γ( Y) is positive with respect to Y. This
means it can be written in prenex normal form with a matrix V Λ ^tj in

disjunctive normal form such that no ^ u is of the form zφY. Thus xeΓ(7) is a
consequence of positive facts about Y. x gets into Γ(Y) because certain z's already
belong to Y. Note that positivity implies monotonicity.

8.4 Proposition. // Γ is monotonic, then Γ is positive.

Proof. xeΓ(Y) is equivalent to

( Z ) [ y c Z - x e Γ ( Z ) ] ,

(Z)(Eu)[(iιey & uφZ)v xeΓ(Z)l D
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8.5 Theorem (Spector 1955). Suppose A is Πj and Γ is monotonic H{. Then

Γ(A)=v{Γ(H)\Hς^A & HeHYP}.

Proof. neT(A) iff SR(n) is wellfounded, by the relativization of Proposition 5.3.1 to
A, as in 5.4.Π. SR(n) is recursive uniformly in A, n. Fix n and assume neΓ(A). Then,
as in the proof of Proposition 8.4,

(1) (Z)(Eu)[(ιιei4 & uφZ) v Sz

R(n) is wellfounded}

Let /be a recursive function such that for all m,

meA+-+f(m)eO.

Define Aα to be {m|/(m)eθα}. Then (1) becomes

(2) (Z)(Eb)[ί>eOz & ( i 4 w ^ Z v | S ί ( ι ι ) |

The matrix of (2) is Π}, hence it can be uniformized by a Π} predicate Q{Z, b) by
adapting the proof of Theorem 2.3.II. For each Z, let ί(Z) be the unique b satisfying
<2(Z,£>). Then t is Δ} and

(3) (Z)lt(Z)eOz & (Am)lφZv\Sz

R(n)\ = \t(Z)\)l

A slight modification of the proof of Lemma 5.5.II yields a recursive ordinal bound
δ on | ί(Z) | . If there is no such δ, then 0 is Σj .

& χ>y

Thus for some δ < ω?κ, | ί (Z) | < δ for all Z. (cf. Exercise 5.10.II). (3) becomes

and so neY(Aδ). D

An intuitive summary of Theorem 8.5 and its proof is: if neT(A\ then
"enumerate" A until some hyperarithmetic H c ,4 is developed with the property
that neΓ(H).

8.6 Corollary (Spector 1955). IfT is monotonic Π}, then |Γ | < ω?κ and

Proo/ If Z G Π J , then Γ(X) is Π} by Theorem 8.5. An effective transfinite recursion
on <o shows Γ,ft| is Π} uniformly in b for all beO. Hence Γωcκ is Π}. Another
application of 8.5 yields Γ(Γωcκ) = Γωcκ. D



8. Inductive Definitions 79

A type-omitting argument in the setting of ω-logic clarifies the roles of mono-
tonicity and Π}-ness in Theorem 8.5. Let A be a finite subset of the axioms of set
theory with enough strength to establish the essential properties of the hyper-
arithmetic hierarchy, and to prove the existence and countability of ω^ κ . The
statement, M is a real that encodes an ω-model of A, is arithmetic, hence has a
solution N such that ω^ = ω^κ by Corollary 1.4.

Let V be the real world of sets, and let VN be the model encoded by N. The reals
of VN are a subset of the reals of V. The encoding has the property that each real of
VN is recursive in N. Note that any Π} sentence true in Fis also true in VN9 since the
transition from V to VN simply restricts a universal function quantifier to a
countable set.

A ordinal z in the sense of VN is called standard if it belongs to V, that is z is truly
wellqrdered. Suppose y is a standard ordinal countable inside VN. Thus y is the
ordertype of some linear ordering X of ω for some Xe VN. X is recursive in N, so
ωx = ω^ κ, and so y is a recursive ordinal. On the other hand each recursive ordinal
(of V) is a recursive ordinal in the sense of VN. Thus the standard recursive ordinals
of VN are the recursive ordinals.

Let (ω^κ)yf denote the least nonrecursive ordinal in the sense of VN. The above
considerations imply (ω^ κ ) κ * is not standard. It follows that (ω^ κ ) κ * is the limit of
nonstandard ordinals.

Suppose A c w is Π}. Let / be a recursive function such that for all m,
meA<r+f(m)εO, and let Aδ be {m\f(m)eθδ} for each δ < ω^κ. Then Afr = Λδ for
each standard recursive <5, and Afr ^ A for each nonstandard recursive β.

Let Γ be mono tonic and Π}. Suppose nsΓ(A). Then for each nonstandard
recursive /?,

(1) neΓ(v4^)is true in V

by monotonicity of Γ. Since (1) is a Π} fact, and VN is an ω-model, (1) is also true in
VN. In VN let δ0 be the least β such that neT(Av

β

n). δ0 must be standard,
hence recursive, because there is no least nonstandard ordinal in VN. Therefore

The above is called a type-omitting argument because the standard ordinal ω^ κ

is omitted from VN.

8.7 Inducively Defined Sets of Reals. Theorem 8.6 has been lifted by Cenzer 1976 to
sets of reals. Let Γ map 22<O into itself. Let A be a variable that ranges over subsets of
2ω. A predicate R(A,f, X) is said to be recursive if there is a Gόdel number e such
that for all A9 f and X,

{e}A'f'x is defined, and

In the language of Part D: R(A,f, X) is ^-recursive in /, X with re A as an
additional predicate. Only two facts are needed here.
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(i) The computation of {e}A'f'x uses only countably many membership facts
about A.

(ii) Let B be a real that encodes a countable set of reals whose complement
relative to 2ω is denoted by AB. Then {f)R(ABJ, X) is a U\ predicate with free
variables B and X.

Both (i) and (ii) should seem plausible, (i) is analogous to the fact that the
computation of {e}x uses only finitely many membership facts about X. (ii) is
reasonable, since AB is equivalent to a real, and since a Πj predicate of sets of reals,
restricted to reals, should be Π} in the usual sense.

8.8 Proposition. IfT: 22<O-+22<a is monotonic Π } , then it is positive.

Proof. Similar to 8.4. Let B be the real variable of 8.7(ii). Then {f)R{AJ9X)
implies

(1) (B)tA<=AB-+(f)R(AB,XJ)l

Assume X satisfies (1) to show XeΓ(A). If not, then by 8.7(i) there is an / such
that ~ R(AB,f X) holds for some B such that A^AB. D

8.9 Theorem (Cenzer 1976). Suppose Γ: 22<O-+22<O is monotonic Π}, and X e Γ V
Then XeΓβfor some β <ωx.

Proof. Γo = 0. By the monotonicity of Γ, XeΓί iff(B)(f)R(ABJ9 X). Thus I\ is
U\ by 8.7(ii). Similarly, XeΓ2 iff

and so Γ2 is Πj. In this manner an effective transfinite recursion shows

(1) eeθx & XeΓ{
{elχ

is Π} uniformly in X and e. It follows that Tωx is Π} uniformly in X.
To complete the argument, fix X and assume I e Γ ω J f + 1 with the intent of

showing X e Γωx. The desired bound on X is obtained as in the proof of Theorem
8.5. Γ is monotonic, so

since XeΓωx + {. Let Bo be the countable set of reals encoded by B. Then

(2) (B)(Eb)lbeOB>x & (Γ

SR' X is a binary relation recursive in B, X (uniformly) that is wellfounded iff
(f)R(AB, XJ). The latter formula is YV\ in B and X according to 8.7(ii). S%x is the
relativization of SR (in subsection 5.2.1) to B, X. The matrix of (2) is Π}, and so can
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be uniformized by some Πj predicate Q(B,b) with parameter X (cf. Theorem
2.3.II). Let b(B) be the unique b satisfying Q(B, b). Then

(B)[b(B)eOB>x & (ΓbiB)nBo = 0v\SB>x\ = \b\)l

As in the conclusion of the proof of 8.5, there is an ordinal δ <ωx such that
\b(B)\ < δ for all B. Consequently

hence xeΓδ + 1. D

8.10 Corollary (Cenzer 1976). //T:22t0->22t0 is monotonic Π\, then ΓM is Π} and
| Γ | = ω x .

8.11 Bounding Arguments. The proofs of Theorems 8.5 and 8.9 made use of a
bounding principle first stated as Exercise 5.10.II. Let P(X, b) be Π}. Suppose
(X)(Eb)[P(X, b) & beθx]. Then there exists a δ < ω^κ such that

(X)(Eb)lP(X9b) & \b\x<δl

A proof of Exercise 5.10 was incorporated into the last part of the proof of Theorem
8.5. The above bounding principle captures a strong closure property of the
recursive ordinals. A weaker form (X replaced by x) will be used extensively in the
next chapter.

8.12-8.15 Exercises

8.12. Show each Π} set of numbers is one-one reducible to one inductively defined
by a Π?Γ, by a monotonic Π} Γ.

8.13. Find a Π} set of numbers not inductively definable by any monotonic Πj Γ.

8.14. If A is a set of formulas, let \A\ be the supremum of all ordinals γ such
that γ = I Γ| for some Γ definable by a formula in A. Show | Π? | = ω^κ. Show
|Σ}| Φ |Π} |. (S. Aanderaa has shown |Π} | < |Σ} |.)

8.15. Call P(X) monotonie if P(X)^P( Y) whenever X c y. Suppose P(X) is
monotonic Π}, A is Π}, and P(A). Show P(H) for some hyperarithmetic

9. U{ Singletons

The subject of Π} singletons verges on set theory, but the results of this section have
been phrased and proved in a mood of sympathy for those new to constructible sets
and forcing. Most of the ideas applied have already been used in the earlier
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accounts of 11° singletons and scattered Σ} sets. A is a Π} singleton if A is the
unique solution of some Π} predicate. A set is scattered if it contains no perfect
subset.
(Review: a set K of reals is perfect if K is nonempty, closed and has no isolated
points; pεK is isolated if {p } = K n Ffor some open set V; a perfect set of reals has
the same cardinality as the continuum.)

9.1 Proposition. If A is a Yl\ singleton, then so are OA and every B =hA.

Proof Fix B=hA. Thus

B = {e}Hi & A^{c}H°°

for some bεOΛ and aeOB. Then B is the unique solution of

V) & Y=

where P(Y) is a Π} predicate whose unique solution is A. <OA is the unique

solution of P({eo}
γ) & [ 7 satisfies closure condition A(X) of subsection 2.1.1

relativized to {eo}y] & γ i s wellfounded. {έV}0* = Z for all Z. D

9.2 Constructibility. The formulas of Zermelo-Fraenkel set theory (ZF) are well-
formed combinations of the symbols of first order logic and ε, the membership
symbol. The first order variables x,y,z9... range over the universe of sets.
Suppose b and c are sets, b is said to be a first order definable subset of c if there is a
formula tF(x) of ZF such that

(1) (d)ldeb^dec & <c, ε

«^(x) may mention finitely many sets from c. The last part of (1) means ^(d) is
true when d is interpreted as d and the quantifiers of 3F range over c.

GόdePs hierarchy L of constructible sets is defined by iteration of Q. Q(c) is the
set of all first order definable subsets of c.

L(0) = φ. L(β+l) = Q{L(β)).

L(λ) = κj{L{β)\β< λ) if λ is a limit.

Gόdel showed L is a model of ZF, the axiom of choice and the generalized
continuum hypothesis. The central features of L are its downward Skolem-
Lόwenheim properties. For example, if 2ωn(L(β + 1) - L(β)) is nonempty, then
β is countable. These matters are discussed at greater length in Part C and there
utilized in the solution to Post's problem for α-recursion theory.

9.3 Lemma. Each nonempty H\ set of reals has a member X constructible via an
ordinal recursive in X, that is XeL(β)for some β < ωf.
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Proof. According to subsection 5.4.II, a typical Π} predicate has the form, {e}γ is
wellfounded, where {e} is such that {e}γ is total and a binary relation between
numbers for all Y. The Kleene-Brouwer ordering of sequence numbers, invoked in
the proof of Lemma 2.1, makes it possible to say:

(1) {e}γ is wellordered

is a typical Π} predicate, where {e}γ is total and a linear ordering of numbers for
all Y.

The solutions of (1) are associated with the infinite branches of a tree T defined as
follows. A node of T is a pair <s, g} such that:

(i) 5 is a sequence number that encodes an initial segment of a subset of ω;
(ii) let {e}} be the finite linear ordering computed from s via e and computations of

length Jess than s; g is an order-preserving map of {e}} into ω1.

Say <s, g} > Γ < ί , h} if s is properly extended by t and g^h. Let
{< sf, gt > I i < ω) be an infinite branch of T. The union of the sf's is the characteristic
function of some solution Y of (1). The union of the g^s is a witness to the
wellorderedness of {e}γ.

Let < th ^ > and <sf, ^ > be infinite branches of T. < th h( > is said to be to the left
of <s f,^>if:

(iii) for some ί and n, ί f(n) < s^n) & (m) m < n (ί i (m) = s^m));
(iv) or (0 (sf = ti) and for some; and x, #(x) < /ι(x) & g(y) = h{y) for all y less

than x according to the linear ordering {e}sJ.

Assume (1) has a solution. Then Γhas a leftmost infinite branch Z . Z is readily
defined by recursion on i. At state i + 1, suppose <s f, gt > has already been chosen,
and let <s, g} be an arbitrary immediate successor of <s, , gt> in T. Let Tsg be the
subtree of T whose nodes extend <s, #>. Discard <s, #> if Γ s t β is wellfounded.
Among the remaining nodes there is a leftmost one in the same sense of leftness as
that defined by (iii) and (iv). It is <sf + ί9 tt + x >.

Let Z o be the subset of ω whose characteristic function is v{si\sieZ}, and let δ
be\{e}Zo|. Define Tδ by restricting Tto S. The nodes of Tδ are the nodes of Tthat
mention only ordinals less than δ. TδeL, because δeL and Tδ is first order
definable over L(δ).

Suppose Tδ had no infinite branch inside L. Then inside L, Tδ is wellfounded and
has ordinal height | 7*1, and there is a map k from Tδ into | Tδ \ such that k(u) < k(v)
whenever u < v in Tδ. But then k serves to show Tδ is truly wellfounded and so has
no infinite branch anywhere. This last cannot be, because Z is an infinite branch
of T*.

Let the leftmost branch of Tδ in L be Z L . That part of Tδ to the left of ZL is
wellfounded inside L, hence truly wellfounded by the argument of the previous
paragraph. Hence Z L is the leftmost path of Tδ not just in L but truly so. It follows
that Z = Z L .

All that remains is the location of Z in L. Suppose Z = {(sh #/>}. Let Z o be the
set encoded by {< sf >}, and gz the function from {e}Zo onto δ encoded by
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Call a node radical if it belongs to Tδ and lies to the left of Z. Let RZo be a
wellordering of ω of height δ and recursive in Z o . Then the nodes of Tδ can be
construed as elements of ω x ω, and gz as a function from {e}Zo onto # Z o . The
uniqueness of gz as an orderpreserving function implies it is hyperarithmetic in Z o .
It follows that the set of all radical nodes is hyperarithmetic in Z o . The subtree Tδ

that issues from a radical node u is wellfounded. Its ordinal height | Tδ

u | is less than
ωf°, since Tδ

u can be construed as a tree hyperarithmetic in Z o (uniformly in u). The
matrix of

(w)(Eb) [we Radical-* b eOZo & | Γ f | < | f e | Z o ]

is Π}. It follows from Kreisel uniformization (2.3.II) that b can be taken to be a
hyperarithmetic function of u. Hence Spector bounding (5.6.1) implies the strict
supremum of | Tδ

u | over all radical u is some y < ωf°.
The recursion that defined Z from Γalso defines Z from Tδ. At stage i + 1 of the

recursion, the leftmost <s,#> is chosen such that <s, g} is an immediate successor
of <st , gt} and Tδ

sg is not wellfounded. The last clause is equivalent to

(1) \Tδs,g\ is not less than y.

(1) is false iff there is a map /from T%g onto | Γf J such that/(u) = \Tδ

u\ for all
ueTδ

sg. If/ exists, then it is unique and defined by recursion on the wellfounded
relation Tδ

sg. The recursion can be performed at level δ + | Tδ

 g\ of L. Thus/ if it
exists, is first order definable over L(δ + | Tδ

jg\). It follows that the recursion that
defines Z can be carried out at level δ + γ of L. D

9.4 Corollary (Addison, Kondo). Each nonempty Π} set of reals contains a U\

singleton.

Proof. Suppose K is Π} and nonempty. By Lemma 9.3 there is an X in K
such that XeL(ω*). With each such X, associate a pair <y, δ}x of ordinals:
XeL(y+ l ) - L ( y ) and \{e}x\ = δ. (K is the set of all X such that ({e}x is
wellfounded.) The formula, XeK and XEL(ωf) and <y, δ }x has the least possible
value, is Π j , and almost has a unique solution. To clinch the uniqueness, minimize
the Gόdel number of the formula that defines X as a subset of L(γ). The Gόdel
number has to include parameters needed for the definition of X over L(y). The
proof of Lemma 9.3 makes it safe to assume those parameters are ordinals. D

9.5 Theorem (Mansfield, Solovay). IfK is Π}, then (i), (»') and (Hi) are equivalent,

(ί) K contains a perfect set.
(ii) K contains a perfect set with constructible code,

(in) K has a member XφL(ωx).

Proof, (i) -• (ii). The set of all Z's that encode perfect subsets of K is Π}, hence at
least one such is constructible by Lemma 9.3.
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(ii) ->(iii). Let ZeL encode a perfect subset of K denoted by Pz as in subsection
6.1. The predicate

XePz &

is satisfiable by all but countably many XePz, is Σj in Z, and so has a solution X
such that ωf)Z = ωf by Corollary 1.5 relativized to Z. If XeL(ωf), then XeL(ωf),
and consequently X <hZ by Exercise 9.11.

(iii) -> (i). The second half of the predicate

(1) l e X &

is Σ} according to Exercise 9.7. Let R be a recursive predicate such that
(Eϊ)(x)R(s(x),f(x)) holds iff s is the characteristic function of some X such that
XφL(ω*). The solutions of (1) are associated with a tree U that combines tree Γof
the proof of Lemma 9.3 with tree TR needed in the proof of Kleene's basis Theorem
(1.3). T is needed for the first half of (1), and TR for the second half. A node of U has
the form <s,0,w>, where <s, g} is a node of Γ, w is a sequence number that
encodes an initial segment of a function, length of w = length of s, and R(s, w)
holds. An infinite branch through U delivers an I G K , a witness to the fact that
XGK, and a witness to the fact that XφL(ω\).

As in the proof of 9.3, XeK iff {e}x is wellordered. Choose Xθ9 a solution of (1),
to minimize |{e}*°| = δ. Define Uδ by restricting ί/ to <5. Thus each node of Uδ

mentions only ordinals less than δ. The perfect set construction takes place within
Uδ. Let Uδ

SfgtW be the subtree of Uδ issuing from node <s, g, w>. For the moment
assume Uδ has the following splitting property: If Uδ

gw has an infinite branch,
then there exist <s f, gi9 wf> (i < 2) such that <s, g, w> is extended by <s f, 0 i ? v^),
l/f. 0. w. has an infinite branch, and s0 is incomparable with sx.

The construction proceeds as in the proof of Theorem 6.2. {<sf, g{, w{>|
i < ω & 7 < 21} is defined by recursion on i. SQ, #O a n d w o a r e n u H ^sg ^ wg

 n a s

an infinite branch because Xo is a solution of (1). (sf{ ί9 gf{ ί9 wf{ x > and
<s?i.i1,gf?i"i1»w?+"i1> a r e extensions of (s{9g

j

i9w{y provided by the splitting
prdjperty. {s{\i <ω & j < 21} encodes a perfect subset of K.

To check the splitting property, assume that Uδ

gw gives rise to a unique
solution X of (1). The concluding arguments of Lemma 9.3 will show XeL(ω\)
contrary to (1). Call a node u e Uδ

βtW false if (M)0 does not encode an initial segment
of X. If u is false, then Όδ

u is wellfounded. Since ωf° < ωf, it follows as in 9.3 that:
Uδ can be construed as a tree hyperarithmetic in X (uniformly in u); the set of all
false nodes is hyperarithmetic in X; the strict supremum of | Uδ \ over all false u is
some y < ωf.

u is a false node iff there is a map/from U£ onto the ordinal \Ui\ such that
f(x) = \Ui\ for all xeί/f. If/ exists, then it is unique and defined by recursion
on the wellfounded relation Uδ. The recursion can be performed at level δ + | Uδ

u \
of L. Thus/ if it exists, is first order definable over L(δ 4-1 Uδ |). It follows that the
set of false nodes, hence X, is definable at level δ + γ of L. D
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The proof of Theorem 9.5 ((Hi) -> (i)) was modeled on the proof of Theorem 6.2
((iii)->(i)). The tree Uδ corresponds to a tree TR not made explicit in 6.2. The
nodes of TR are of the form <s, ί>, where 5 and t are sequence numbers of the same
length and_R(s, t) holds. The Σ} set K of 6.2 is the set of all X such that
(Eg)(x)R(X(x% g(x)). The proof of the splitting property for TR was based on the
fact that (A) if a Σ} predicate has a unique solution, then that solution is
hyperarithmetic. The corresponding fact for 9.5 is: (B) if all the infinite branches of
Uδ carry the same subset of ω, namely X, then XeL(ωx). According to Exercise
9.12, a subset of ω is hyperarithmetic iff it belongs to L(ω^κ). It is possible,
although tedious, but certainly instructive, to give a proof of (A) in the style of the
proof given of (B).

9.6 A Hierarchy of Π} Singletons. Proposition 9.1 suggests that the Π} singletons
might be generated by iterating the hyperjump. To be precise, define

h0 = hyperdegree of the empty set,

hδ+1 = hyperjump of hδ, and

hλ = least upper bound of {hδ\δ < λ}.

It turns out that hλ is undefined for a certain countable ordinal σ0. σ0 is fairly
large. It is the least Σ t admissible ordinal that is a limit of Σx admissible ordinals
(Richter 1967, Sacks 1971).

For all δ < σ0, hδ is the hyperdegree of a Π} singleton. But {hδ\δ <σ0} does not
exhaust the hyperdegrees of the Π{ singletons.

Suzuki 1964 proved that the partial ordering of hyperdegrees, restricted to the
Π} singletons, is a wellordering. He observed: if X and Fare Π} singletons, then

(1) X<hY~ω

Assume the right side of (1) holds. Suppose X is the unique solution of

(2) {e}z is wellordered.

The ordertype of {e}x is less than ω{, hence (2) (with X in place of Z) is equivalent
to \{e}x\<\b\γ for some fixed beθγ. Thus (2) is Δ} in Y. Hence X <hY by
Theorem 2.5.II relativized to Y.

9.7-9.13 Exercises

9.7. Show XeL(ωx) is a Π} predicate.

9.8. (Gaspari, Kechris, Sacks). Call a Π} subset of 2ω scattered if it contains no
perfect subset. Show the union of all scattered Π} sets is a scattered Π} set.
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9.9. (Kondo, Addison). Suppose P(X, Y) is Π}. Show P(X, Y) can be uni-
formized by some Π} Q(X,.Y).

9.10. (Shoenfield). The Δ2 reals are a basis for the Σ2 predicates of reals.

9.11. Show XeL{ω\, Z) iff X <hZ. (The definition of L(β, Z) is the same as that
of L(β) in subsection 9.2 save for the initial step, which is replaced by
"L(0,Z) = {Z}'\)

9.12. Show X is hyperarithmetic iff XeL(ω^κ).

9.13. Prove reduction, as defined in Section 3.6.II, for Π} sets of reals.




