SUBFACTORS, PLANAR ALGEBRAS AND ROTATIONS
MICHAEL BURNS

ABSTRACT. Growing out of the initial connections between subfactors and knot theory that gave rise to the
Jones polynomial, Jones’ axiomatization of the standard invariant of an extremal finite index II; subfactor
as a spherical C*-planar algebra, presented in [16], is the most elegant and powerful description available.

We make the natural extension of this axiomatization to the case of finite index subfactors of arbitrary
type. We also provide the first steps toward a limited planar structure in the infinite index case. The central
role of rotations, which provide the main non-trivial part of the planar structure, is a recurring theme
throughout this work.

In the finite index case the axioms of a C*-planar algebra need to be weakened to disallow rotation of
internal discs, giving rise to the notion of a rigid C*-planar algebra. We show that the standard invariant
of any finite index subfactor has a rigid C*-planar algebra structure. We then show that rotations can be
re-introduced with associated correction terms entirely controlled by the Radon-Nikodym derivative of the
two canonical states on the first relative commutant, N’ N M.

By deforming a rigid C*-planar algebra to obtain a spherical C*-planar algebra and lifting the inverse
construction to the subfactor level we show that any rigid C*-planar algebra arises as the standard invari-
ant of a finite index II; subfactor equipped with a conditional expectation, which in general is not trace
preserving. Jones’ results thus extend completely to the general finite index case.

We conclude by applying our machinery to the IT; case, shedding new light on the rotations studied by
Huang [11] and touching briefly on the work of Popa [29].

In the case of infinite index subfactors there are obstructions to having a full planar algebra theory. We
constructing a periodic rotation operator on the L2-spaces of the standard invariant of an approximately
extremal, infinite index II; subfactor. In the finite index case we recover the usual rotation. We also show
that the assumption of approximate extremality is necessary and sufficient for rotations to exist on these
L2-spaces.

The potential complexity of the standard invariant of an infinite index subfactor is illustrated by the
construction of a IT; subfactor with a type III central summand in the second relative commutant, N’ N M.
The restriction to L2-spaces does not see this part of the standard invariant and Izumi, Longo and Popa’s [13]
examples of subfactors that are not approximately extremal provide a further challenge to move beyond the
L2-spaces in the construction of rotation operators. The present construction is simply an initial step on
the road to a planar structure on the standard invariant of an infinite index subfactor.

Part 1. Introduction

The study of subfactors was initiated by Jones’ startling results on the index for subfactors in [15].
His work gave rise to a powerful invariant of a subfactor known as the standard invariant. This invariant
has many equivalent descriptions, including Ocneanu’s paragroups, bimodule endomorphisms and 2-C*-
tensor categories. Popa’s axiomatization of the standard invariant of a finite index //; subfactor in terms
of standard \-lattices, [28], was a major advance in the field. Jones’ [16] planar algebra axiomatization
for extremal finite index //; subfactors builds on this to produce a diagrammatic formulation in which
the standard invariants “seem to have now found their most powerful and efficient formalism” (quoting
Popa [29]).

The present work is concerned with extensions of the planar algebra machinery to wider classes of
subfactors than those considered in Jones [16] and a recurring theme will be the properties of rotation
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operators. After these introductory remarks in chapter one, the second chapter is concerned with ex-
tending Jones’ subfactor-planar algebra correspondence from extremal finite index II; subfactors to the
general finite index case and proving some results with this machinery. Chapter three concerns infinite
index subfactors and defining rotations on their standard invariants as a step towards a restricted planar
structure on them. There are obstructions to a full planar algebra structure in the infinite index case.

Before embarking on a chapter by chapter summary we present a quick overview of the area. The
reader is referred to Jones and Sunder [14] for basic material on subfactors, with a focus on the finite
index II; case.

E
Let N C M be an inclusion of factors equipped with a normal conditional expectation £ of finite
index. The Jones’ basic construction yields a factor M, generated by M and the first Jones’ projection

e1, together with a normal conditional expectation E); : My — M. Iterating this procedure we obtain a
E E En Eu.
tower of factors and conditional expectations, N C M &M 1 - My C’ .... The standard invariant

E
of N C M is the lattice of relative commutants obtained from this tower:

C=NnNN C N' NM Cc NnM, ¢ NnNM, ¢ NNM; C---
U U U U
(C:M’OM C M/li C M’ﬂMg C M/ﬂMg cC---

together with the conditional expectations. The algebras M N M; are all finite dimensional C*-algebras
(multi-matrix algebras). The standard invariant is a powerful invariant of the subfactor and it is a com-
plete invariant in the case of amenable I1; subfactors (Popa [27]).

The case where M (and hence ) is a II; factor and E is the unique trace-preserving conditional
expectation from M onto N is the most extensively studied. A special case of this is when the subfactor
is extremal, which is to say that the trace tr on M and the unique trace tr’ on N’ agree on N'N M. In [28]
Popa axiomatized the standard invariant of an extremal II; subfactor, proving that the standard invariant
of an extremal II; subfactor forms an extremal standard \-lattice and conversely any extremal standard
A-lattice arises in this way. The general finite index II; case, a simple generalization of the proof in [28]
and known to Popa, first appears in print in [29].

In [16] Jones characterizes the standard invariant of an extremal II; subfactor as a spherical C*-
planar algebra: loosely speaking, a sequence of finite dimensional vector spaces V; with an action of the
operad of (planar isotopy classes) of planar tangles as multi-linear maps, consistent with composition of
tangles, equipped also with an involution * and satisfying certain positivity conditions and an additional
spherical isotopy invariance.

The proof that every spherical C*-planar algebra arises from an extremal II; subfactor is an appli-
cation of Popa’s standard A-lattice result. The construction of the planar algebra of an extremal II;
subfactor is the main result of Jones [16] and a key ingredient is the periodicity of the rotation operator
which, after the result has been proved, can be realized as the tangle below, illustrated in the case of
Vi = NN Ms.

The planar algebra machinery has been a powerful tool in proving results on the combinatorial struc-
ture of the standard invariant and obtaining obstructions on the possible principal graphs and standard
invariants of subfactors. See for example the work of Bisch and Jones [2, 3, 4, 17, 18].

Extending the planar algebra formalism to the general II; case begins with proving the periodicity
of the rotation operator. In [11] Huang defines two rotation operators on the standard invariant of a II;
subfactor and proves that each is periodic.

The case of infinite index subfactors is first taken up by Herman and Ocneanu in [10]. The results
that they announced were proved and expanded upon by Enock and Nest [8], where the basic results
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for infinite index subfactors are laid down. This paper also characterizes the subfactors arising as cross-
products by discrete type Kac algebras and compact type Kac algebras.

The tower and standard invariant can still be constructed in the case of an infinite index inclusion, but
the process becomes much more technical. Operator-valued weights must be used in place of conditional
expectations and the relative commutants need no longer be finite dimensional. Even in the simplest
case of an infinite index inclusion of II; factors, only the odd Jones’ projections exist, implementing
conditional expectations, and the other half of the maps in the tower are operator-valued weights. The
standard invariant does not form a planar algebra in this case.

In the following chapter we discuss the finite index case. Background material on general finite index
subfactors is presented and a small number of technical results developed before we turn our attention
to extending Jones’ planar algebra results.

Rigid planar algebras are defined in almost the same way as the planar algebras of Jones except that
we do not allow rotations of internal discs. After proving basic results about rigid C*-planar algebras,
including the central role of Radon-Nikodym derivatives, we construct a rigid C*-planar algebra structure
on the standard invariant of any finite index subfactor.

Every rigid C*-planar algebra is shown to have a modular extension in which discs can be rotated
provided we insert correction terms involving the Radon-Nikodym derivatives. We then go on to deform
the modular extension so as to remove the correction terms, in essence by incorporating them already in
the action of the tangles. We thus obtain a spherical C*-planar algebra and thus an extremal II; subfactor.

Finally we lift the inverse construction to the level of subfactors and are able to prove that every rigid
C*-planar algebra arises as the standard invariant of a finite index subfactor, in fact a subfactor of type
II;, though the expectation may not be trace-preserving.

We then apply the planar algebra machinery that we have developed to the rotations studied by
Huang [11] and illuminate some of Popa’s constructions in [29] in our context.

Chapter 3 is concerned with infinite index II; subfactors. After some initial material describing the
basic construction in this setting we take advantage of the additional structure provided by the require-
ment that the first two factors in the tower be of type II;. We thus have half of the Jones projections still
at our disposal and are able to construct an orthonormal basis for M over N. These tools allow us to
extend the notion of extremality to the infinite index case and show that it has the usual properties.

Motivated by some of our work in the finite index case we can formally define rotation operators on
the L2-spaces of the standard invariant. The existence of these operators is then shown to be equivalent
to approximate extremality of the initial subfactor.

We conclude with an result indicating the potential complications that arise once we move to finite
index subfactors. We construct of a II; subfactor with a type I1I central summand in the second relative
commutant, N’ N M.

2014 Maui and 2015 Qinhuangdao conferences

in honour of Vaughan F. R. Jones’ 60th birthday Page 27



The author would like to thank Jesse Peterson and David Penneys, who contributed corrections to
Sections 3.2.2 and 3.2.3 during the preparation of this manuscript for the Jones birthday conference
proceedings.

Part 2. Finite Index Subfactors of Arbitrary Type

In this chapter we extend Jones’ subfactor-planar algebra correspondence in [16] from extremal finite
index II; subfactors to the general finite index case.

We begin in sections 1.1 and 1.2 with a review of the machinery of operator-valued weights and
relative tensor products as a prelude to the discussion of index and the basic construction in section 1.3.

A number of tedious, but necessary, computational results are proved in Section 1.4. We connect
the bimodule and relative tensor product structure on the algebras M, with that on the Hilbert modules
L%(My), before concluding with further results on the multi-step basic construction.

Section 1.5 is concerned with modular theory. We prove that relative commutants lie in the domains
of the operators of modular theory and that these operators leave the relative commutants invariant.
We also show that the actions of these operators are compatible with inclusions in the tower of higher
relative commutants.

The rotation operator enters the picture in Section 1.6 and we prove that it is quasi-periodic: ( pk)k+1 =
At

In Section 2 we define a more general notion of a planar algebra. In a rigid planar algebra we restrict
attention to isotopies of tangles under which internal boxes only undergo translations. Every rigid C*-
planar algebra has a modular extension in which general planar isotopies are allowed, but rotations of
boxes change the action of the tangle.

There are two canonical states ¢ and ¢’ on a rigid C*-planar algebra given by capping off boxes to
the left or to the right. The Radon-Nikodym derivative w or ¢’ with respect to ¢ controls the effect of
rotations in the following way. Any string along which the total angle changes after isotopy must be
modified by inserting a 1-box defined in terms of w and the total angle change.

In Section 2.2 we show that the standard invariant of a finite index subfactor has a rigid planar algebra
structure. Section 2.3 describes the construction of the modular extension to a rigid C*-planar algebra
and Section 2.4 contains the construction of an associated spherical C*-planar algebra from a rigid C*-
planar algebra. This recovers a result of Izumi that for any finite index subfactor there is a II; subfactor
with the same algebraic standard invariant.

We conclude in Section 2.5 by showing that any rigid C*-planar algebra arises as the standard invari-
ant of a finite index subfactor.

Moving on to the specific case of a (not necessarily extremal) finite index II; subfactor, in Section 3.1
we establish the connection between Huang’s two rotations [11]. We show that the two rotations are the
same if and only if the subfactor is extremal. The method of proof allows a very simple alternative proof
of periodicity in the II; case which will generalize to infinite index II; subfactors in Chapter 3. We go
on to prove some other results for general finite index II; subfactors using the planar algebra machinery.
Section 3.2 sees a two-parameter family of rotations defined on the standard invariant of a finite index
IT; subfactor, while Section 3.3 makes contact with the work of Popa in [29].

SECTION 1. GENERAL FINITE INDEX SUBFACTORS

While most of our work on finite index subfactors can proceed without direct reference to the ma-
chinery of operator-valued weights and relative tensor products, there are occasions when this material
is necessary. We present a summary of technical results in Sections 1.1 and 1.2. The reader who wishes
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to avoid this material can skip these two sections and take as a starting point the results of Kosaki quoted
in Section 1.3.
In Chapter 3 we will make heavy use of operator-valued weights.

Subsection 1.1. Operator-valued weights. Here we summarize some key definitions and results from
Haagerup’s foundational paper [9].

Definition 1.1. Let M be a von Neumann algebra. The extended positive part J\/J\Jr of M is the set of
“weights on the predual of M”, namely M, is the set of maps m : M} — [0, 00| such that m is lower
semi-continuous and m(Ap + ut)) = Am(p) + pm(y) for all A, u € [0, 0], ¢, € M.

Note that M, embeds in M., by & +— m, where m, () = p(z).
Addition and positive scalar multiplication are defined on M, in the obvious way. For a € M,
m € M define a*ma by (a*ma)(p) = m(p(a* - a)). For S C M, define ) _.m pointwise.

Proposition 1.2 (Haagerup [9] 1.2, 1.4, 1.5, 1.6, 1.9). There are several alternative characterizations of]\/4\+,
including:
(i) Any pointwise limit of an increasing sequence of bounded operators in M is in ]\/4\+ and every element
of]/W\Jr arises this way.
(ii) m € B(H)¥ is in ]\7+ iff it is affiliated with M (u*mu = m for all unitary elementsu € M’).
(iii) Let M be represented on a Hilbert space H. Let p € M and let A be a positive self-adjoint operator
(possibly unbounded) on pH affiliated with M. Define m € B(H)7 by

A1/2 2 DA1/2
m<w€>:{” P ¢ e D)

00 otherwise

where we = (- £,£). Thenm € ]\/4\+. Every element of]\/4\+ arises this way.

o~

(iv) Everym € M. has a unique spectral resolution

m(p) = /Ooo Adyp(ey) + ocop(p)p € M

where {ex}xco,00) is an increasing family of projections in M, strongly continuous from the right and
with p = 1 — limey. In addition ey = 0 iff m(¢) > 0 for all nonzero ¢ € M and p = 0 iff
{p :m(p) < oo} is dense in M.

Proposition 1.3 (Haagerup [9] 1.10). Any normal weight © on M has a unique extension (also denoted )

to M., such that: (i) e(Am + pn) = Ap(m) + up(n) forall A, i € [0, 00], m,n € M, and (ii) ifm; /*m

then o(m;) /* @(m).

Definition 1.4. Let N C M be von Neumann algebras. An operator-valued weight from M to N is

T: M, — ]\A/+ satisfying

1. T(A\z + py) = A\T'(x) + uT(y) for all \, u € [0, 0], z,y € M,.

2. T(a*xa) = a*T(x)aforalla € N, x € M,.

T is normal if

3. z; / x implies T'(x;) / T(x).

Remarks 1.5.

e A normal operator-valued weight 7' : M, — NJF has a unique extension 7" : ]\/4\+ — ]\Af+ also
satisfying 1, 2 and 3 above.
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e T is a conditional expectation iff 7'(1) = 1.
Definition 1.6. As for ordinary weights define
ny={xeM:||T(x"z)| < oo}
my = nyny = span{z"y|z, y € nr}
[In the case when T is a trace Tr these are the Hilbert-Schmidt and Trace Class operators respectively.]

Note that ny is a left ideal, n; and my are N — N bimodules and 7" has a unique extension to a map
my — N.Forz € mp, a,b € N, T(azxb) = aT'(z)b.

Definition 1.7. T is faithful if T'(x*x) = 0 implies x = 0. T is semifinite if ny is o-weakly dense in M.
n.f.s. will be used to denote “normal faithful semifinite”.

Proposition 1.8 (Haagerup [9] 2.3). Let T' be an operator-valued weight from M to N and let ¢ be a
weight on N. If T' and ¢ are normal (resp. n.fs.) then ¢ o T" is normal (resp. n.f.s).

Theorem 1.9 (Haagerup [9] 2.7). Let N C M be semifinite von Neumann algebras with traces Try and
Trps. Then there exists a unique n.f.s. operator-valued weight T' : M, — N, such that Try; = Try o T
(Trn on the right side of the equality denotes the extension of Try to N ).

Remark 1.10. In the proof of Theorem 1.9 Haagerup shows that, for z € M, T'(z) is the unique element
of N, such that

Trar(y'Pay'?) = Ten (y'/?T (2)y'?) forally € N,.

Subsection 1.2. Hilbert A-modules and the relative tensor product. The material in this section
on general Hilbert A-modules is taken from Sauvageot [30] which also draws on Connes [6]. We make
considerable use of the Tomita-Takesaki Theory (see Takesaki [31])

Definition 1.11. Let A be a von Neumann algebra. A left-Hilbert-A-module 4/ is a nondegenerate
normal representation of A on a Hilbert space K, while a right-Hilbert-A-module H 4 is a left-Hilbert-
A°P-module.

Let ¢ be an n.f.s. weight on A. Given a left-Hilbert-A-module 4/C, the set D(4/C, ) (also denoted
D(K, ) or D(4K)) of right-bounded vectors consists of those vectors £ € K such that @ — af extends
to a bounded operator R(¢) = R?(£) : L?*(A,¢) — K. For a right-Hilbert-A-module # 4, the set
D(Ha,p) = D(Ha) of left-bounded vectors consists of those vectors £ € H such that Ja — Ea*
extends to a bounded linear operator L(£) = L#(€) : L?(A, p) — H.

Remark 1.12. The left-bounded vectors in # 4 can equivalently be defined as D(H, p°P), the set of
right-bounded vectors for H considered as an A°°-module by defining 7(a)¢ = £a. In other words by
requiring the boundedness of the maps R¥" (¢) : L2( A%, p°?) — H defined by @ — 7(a)¢ = &a.

Subsubsection 1.2.1. Relative Tensor Product. Given a left-Hilbert- A-module 4K and right-bounded vec-
tors 11,72 € D(4K, ¢) note that R(m;)*R(n2) € A’ N B(L*(A, ¢)) = JAJ and so defines an element of
A

A (m,m2) = JR(m) R(n2)J.

Similarly, given a right-Hilbert-A-module H 4 and left-bounded vectors &, € D(Ha, ) note that
def

(€1:62) 4 = L(&1)"L(&) € (JAT) = A,

Although both of these pairings satisfy (1, ()" = (2, (1) and (¢, () > 0, in general they are not
A-valued inner products in the regular sense as they are not A-linear in either component. However, we
have the following result.
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Lemma 1.13. Recall the definition of the modular automorphism group, of = Al - A7t (t € R). D(4K, @)
is stable under elements of D(o;),) and

alan,m) = 052<Q)A (m,ng2) -

D(Ha, ) is stable under elements of D(0*, ,,) and

(€1,&2a) 4 = (§1.&2) 4 020/2(a)~

Lemma 1.14 (Sauvageot [30] 1.5). (i) @ (4 (m1,m2)) = (M, m2), ¢ ((&1,&2) 4) = (€2, &1)-
(”) A <771a 772> ; <€17§2>A € ng& and

(4 <7717772>)A = JR(m) n2, ((61,&2)4) = L(&)"&1.

(iii) ((§2,&1) 4 M5 m2) = (€2, &4 (M1 m2))-

Definition 1.15 (Relative tensor product). Given Hilbert A-modules 4 and 4K define the relative
tensor product H ®, K (sometimes denoted H ®4 K when the choice of ¢ is clear) to be the Hilbert
space completion of the algebraic tensor product D(H 4) ® D(4K) equipped with the inner product
(1) (&1 O, & ©n2) = ((&2:61) 4 1, 12)

(2) = (§2, &1 4 (M1, m2))

[First quotient by the space of length-zero vectors, then complete]. The image of £ ® nin H ®4 K is
denoted £ ®4 1 or £ ®, n. If H is a B-A bimodule and K an A-C' bimodule then H ®4 K is naturally a
B-C' bimodule.

Remark 1.16. H® 4K is also the completion of D(H 4) ® 4 K using (1) or the completion of H® 4 D(4K)
using (2). The relative tensor product is not A-middle-linear, but we have the following result.

Lemma 1.17. For{ € H,n € D(K,¢),a € D(0¥, ;) we have

§a Ry N = 3 Qq Ufi/g(@)ﬁ
Notation 1.18. (1) For ny, 1, € D(4K, ) define
0% (m,m2) = R(m)R(n2)" € A'N B(K).
(2) For{ € D(Ha)let Le : K — H ®4 K denote the map Lg : g — & (}i} n.
Forn € D(4K) let R, : H — H ®4 K denote the map R, : {£ — §(§n.
By (1) and (2) L¢ and R, are bounded and L{L¢ = (£,§) 4, Ry Ry = 4 (€, §).
Remark 1.19. In the case of a semifinite von Neumann algebra A with trace Tr we have Ja = a* so

D(Hs) ={£ € H : a+— Eaisbounded} and L({)a = £a. The modular automorphisms are trivial and
hence (-, - ), is right-A-linear and , (-, - ) is left-A-linear.

E
Subsection 1.3. Background material from Kosaki. Let N C M, sometimes denoted (N C M, E),
be an inclusion of (o-finite) factors with a normal conditional expectation £ : M — N. We recall some
material from Kosaki [21, 22] on index and the basic construction in this general setting.
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Subsubsection 1.3.1. Index. Let P(M, N) denote the set of all normal faithful semi-finite (n.f.s.) operator-
valued weights from M to N. Let M be represented on H. By Haagerup [9] there is a bijection between
P(M,N) and P(N’, M'). In [21] Kosaki constructs this bijection in a canonical way, so that there is a

unique n.f.s. operator valued weight £~ : (N'), — (/]\4\’) . such that
d(po E) de

Ay d(wo B
for all n.fis. weights ¢ on IV and all n.f.s weights 1) on M’, where the derivatives are Connes’ spatial
derivatives ([6]). We have the following alternative characterization of £F~*

Lemma 1.20 (Kosaki [22] 3.4). Whenever both sides are defined,

E7H(07(,6) = 077 (&,€).
The index of F is defined to be Ind(E) = E~'(1) € Z(M)7 = [0,00] and is independent of the
Hilbert space H on which M is represented. We will use 7 to denote Ind(F) ™! (note that Kosaki uses A
rather than 7).

Subsubsection 1.3.2. Basic Construction. We will assume henceforth that the index is finite, in which case
E'=71E~!: N' — M'is a normal conditional expectation.

The basic construction is performed as follows. Take any faithful normal state ¢ on N and extend it
to M by po E. Let H = L*(M, ¢) and denote the inclusion map of M into L?(M, ) by either x +— 7 or
2 — A(x). The inner product on L?(M, ¢) is (Z,y) = p(y*x) for x,y € M. Define the Jones’ projection
e1 by -

ez = E(x).
e; extends to a projection in N’ and one defines M to be the von Neumann algebra < M, e; > generated
by M and e;. The usual properties are satisfied:

Proposition 1.21 (Kosaki [21] Lemma 3.2).
(i) eyze; = E(x)ey forallz € M.
(ii) N=Mn{e}.
(iii) Je1J = ey where J = Jy = J,,.
(iv) My = JN'J.
(v) My = span (Mey; M) = span{aeib : a,b € M}.

There is a canonical conditional expectation £y = E)y, : My — M given by
Ey(z) = JoE (JoxJy) Jo
and one has Ind(E);) = Ind(E) = 7! and Ej/(e;) = 7. In addition, we have
Lemma 1.22 (Pull-down Lemma). Me; = Me,. For 2 € M, we have ze; = xe; wherex = 71 Ej(ze;)

Iterating the construction as usual we obtain a sequence of Jones’ projections {e; };>1 and a tower of
factors
NCMCM CM,C...
The state ¢ is extended to the entire tower via p o ' o Ejy o Eyy, o - -+ Eyy, and will simply be denoted

. We will use ~or A to denote the inclusion of M}, in LQ(Mk, ) and 7y, to denote the representation
of Mj, on L?(Mj, ) by left multiplication. Reference to A will be suppressed when it is clear that we
are considering an element of M, in L?(Mj, ¢). Reference to m, will often be suppressed when the
representation is clear.

We have the following additional properties:
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Proposition 1.23.
(1) En(€is1) =75
(2) €i€i+1€; — TE; and [61', €j] = OfOT" |’l - j‘ Z 2,‘
(3) e; is in the centralizer of p on M; for all j > i (i.e. p(e;a) = p(ae;) foralla € M;);
(4) hence @ is atrace on{1,e1,ea, ..., e;}" which forces the usual restrictions on the value of the index
originally found in Jones [15].

Notation 1.24. Following Jones [16] let § = 77'/2 = (Ind(E))"/?, E}, = dex,
Vi = EkEk,1 . El- Note that:

E; = 0E,
Ey By By = Eg,
RV = 0B,
v = 0B,
vpxvy = dEN(x)E) for z € M.

Subsubsection 1.3.3. The Multi-step Basic Construction. Use Eﬂj\i’“ to denote the conditional expectation
EyEnyy o By 0 My — M. When k is clear from context we will sometimes abuse notation and

use Fy; to denote £y, M We have the following result, originally proved in the II; case by Pimsner and
Popa [25] and found as 4 3.6 of Jones and Sunder [14]. The proof only involves properties of the Jones
projections found in Propositions 1.21 and 1.23 and thus holds in the general finite index case.

Theorem 1.25. Forall -1 < i < j < k = 2j —iletm = j — i and let f; ;) be the Jones projection for
. N\ 1/2
(M; C M;, E]]\\jf) Let Fj; j = Ind (Eﬁf) fiij) = 0™ fiij) and let < Mj, fi; ;) > be the factor resulting

from the basic construction. Then there is a unique isomorphism W;? < Mj, fij) >— My which is the
identity on M; and such that

Wf(f[z’,j]) = 5m(m71)(€j+1€j ceeipo)(ejroceivs) e (ep e €j41)

def
= i)

or, equivalently,

75 (Fiig) = (Bjp1Bj -+ Eip2)(Ejya -~ Eiys) - (Bg -~ Ejpa)

Note that we could express this theorem as saying that for j < k£ < 27 41 there is a unique represen-
tation 7r§C of My, on L*(M;, ¢) such that M; acts as left multiplication and e}; ;; acts as expectation onto

M; (i = 2j — k). In fact we can be more explicit in our description of ﬂf.
Proposition 1.26 (Bisch [1] 2.2). Forz € My, y € M; we have
T3 (2)7 = T Byt (zyep) = 07 Byt (2y B g)-
Proof. For k = 2j + 1 the same proof as in Prop 2.2 of Bisch [1] yields
7T2j+1( =17 Lp 2J“(zye[ 1) = REARY DRt 2J“(zyE[ 1,5])-
Applying this to the tower obtained from My, _j, C My;_j41 we get
m (2)7 = 7 Byt (zyeqy) = 0 Byt (2y Eig)
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for z € My, y € M;. O
For more on the multi-step basic construction see Section 1.4, Proposition 1.35, and Proposition 1.37.

Subsubsection 1.3.4. Local index; Finite dimensional relative commutants. As in the II; case there is a local
index formula which implies the finite dimensionality of the relative commutants arising from a finite
index subfactor. Given p € N’ N M define E, : pMp — Np by

Ey(x) = E(p) " E(2)p.
Then one has
e If oF(p) =pforallt € R then
Ind(E,) = E(p)E~"(p) = Ind(E)E(p)E'(p)
e In general
Ind(E,) < E(p)E~(p) = Ind(E)E(p)E'(p)

This proves the finite dimensionality of N’ N M exactly as in Jones and Sunder [14] 2.3.12 (originally in
Jones [15]).

Subsubsection 1.3.5. Basis; relative tensor product. As in the type II; case there exists a (right-module)
basis for M over N. That is, there exists a finite set B = {b;},c; C M such that Zbe pbeib” = 1. In fact

there exists an orthonormal basis, one in which £ N(b*l;) = 0, ;q» Where ¢, are projections in V.

It is worth noting that in the type III case this basis can be chosen to have one element u with
uequ* = 1and Ey(u*u) = 1.

Also following the II; case we have M1 = M,; @y, , M; viaxzE; 1y — v ®yp,_, y, where z,y € M,.
Hence there exists an isomorphism § = ), : @™ M — M, given by

(3) 0 (iUl RITa @& $k+1> = T1U1T2V2 -+ Uplgy1
N N N

(4) = T1URTaV_q U Tkl
Note that as in Jones and Sunder [14] 4.3.4 we have:

Lemma 1.27.

E ~ E ~ ~ ~ o~
(i) If B is a basis for N C M and B is a basis for M C P, then BB = {bb: b € B,b € B} is a basis for
EoF

N C P.
(ii) Bvf = {bv} : b € B} is a basis for M; over M;_,
(iti) B, = {0(bi, ® --- ®@b;,,,) : i; € I} is a basis for M}, over N.
N N

Proof. (i) Simply note that for all x € P
x—ZbE (b*x) ZbeE (b*E(b*z) beE (b*b*z)).

(11) Zb?}feﬂ_ﬂjz‘b* = 2(57 b?);+11)i+1b* = Zbelb* =1.
(iii) Using (ii) and iterating (i) we obtain the basis Bv;Bv;_, --- Buy B = DB
O

Finally, the basis can be used to implement the conditional expectation from N’ onto M’. This result
is proved in the II; case in Bisch [1] 2.7.
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Proposition 1.28. Let B be a basis for M over N. Then E' : N' — M’ is given by

() = TZbIb*.

beB

Proof. Let ®(x) = >_ bxb*. It is equivalent to show that £~ (x) = ®(z). Note that if ¢ € D(H, ) then

forx € M,
> bE(bx)é |
b

< sup|[bl| Y IE@®" )|l R#(€)]]

||| =

1/2
< sup |[0]| (ZQD (E(ﬂb)E(b*x))) K'Y?||R#(¢)|

= sup ||b||¢ (E(z*2))? KY?|| R ()|

where K is the cardinality of B. Hence R¥°¥(£) is bounded and so £ € D(H,p o E).

By Connes [6] Prop 3, span{6? (£,€) : £ € D(H, )} is weakly dense in N'. As both E~! and ® are
weakly continuous, it suffices to show that ® (6% (¢£,£)) = E~1 (6% (&,€)).

For a € M define L(a) : L*(N) — L*(M) by L(a)Z = az. Then L(a)L(a)* = aeja* : L2(M) —
L2(M). Also note that for x € N, bR?(£)7 = bzl = R*°F(£)L(b)Z, so bR (&) = R*°F(£)L(b). Hence

d (0% (&,€)) ZbR“’ )R?(£)*b*
- Z REP(E)LI)L(B) R (©)°

~ RE(QRPE(E)
= 0°°F (£, ¢)
(07 (6.9)
by Lemma 1.20. Hence ® = E~1. O

Subsection 1.4. Computational tools. Here we discuss the relationship between the bimodule struc-
ture and relative tensor products of the algebras M}, and those of the Hilbert modules L?(M},). We then
look at the conditional expectation in terms of the isomorphism theta taking M}, to the k-fold algebraic
relative tensor product of M over N . Finally we take another look at the multi-step basic construction.

Pr0p031t10n 1.29. There is an lsomorphlsm of bimodules 1L.>( M) = ®@%1L2(M) which is given by uy, -
0(x1 QN -+ QN Ik+1) > T QN - QN Thr1-
Remark 1.30. This is not immediately obvious. The bimodule structure on L.?(M},) does not restrict
to that on the algebra M. The right action of N on L?(M}) is Jyn*Jy, not right multiplication Syn*Sj
which may be unbounded. However, by Lemma 1.17,
TRNY =7 0(n) @Y= JAV AV JT @7 = Sn"ST@7 =70 ®7.
N N N N N

~

Lemma 1.31. L2(M;) 2 L3(M) @y L2(M) viaf (z @y y) = (zEy) — T ®7.
N
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Remark 1.32. Note that, although y is not necessarily in D(,L*(M)), z is in D(L*(M)y) because
L(Z) : Jyn— T - n* = JonJoZ is bounded. To see this note that Jo|r2(x) = J_1 and

JonJ()/fL'\ = JonJQ$JOQ = JQJ()ZEJQTLQ = QTJoﬁ = $J_1/ﬁ.

Proof of Lemma.
Both sides have dense span, so it suffices to check that the map preserves the inner product:

(367.557) - (5.5, 7:8) - (Bree17.3)
= o (Y En(z*2)y) = 0*¢ (y* En(x*2")ery))
= 8o (yreix*r'ery) = <(x'E1y’)A, (xEly)A> )
]

Proof of Prop 1.29.
The proposition is true for k£ = 0,1. Suppose the result is true for some &£ > 1. Applying this to
(M C M, Ey) we have L2(M,; 1) = @¥FL2(M)) via

(A1 EyAsEsEy - - - AyEyi By - - - E2Ak+1)A = 1/4\1 % e % Apia.
Note that L2(M) ®y; L2(M) = L2(M) viam : T @y § + 7Y, so kLA (M) =2 QkFPL2(M) via

V = (idoy (®%m) @y id) o (&5 u1).
Let Al = ZL‘lElZEQ, Az = EZ'ZEfH_l, 2 S ) S k + 1. Then

~

(A1EyAsEsEy - - - Ay By By - - - EQAkJrl)A =0 <£L’1 % E % l’k+2> ;

and
v(zrl@...@@:):v(z@m@@m@lﬁ\m):m-..@m.
M M M M M N N

O
Proposition 1.33. Let (N C M, E) be a finite index subfactor. Let a; € M (i > 0).Then
5710 (a1®"'®arar+1®"‘®ak+l> k=2r—1
EMk—l (‘9 (CL1 %} e %} ak+1>) = N N N N
0 <a1®---®arE(ar+1)®---®ak+1) k=2r
N N N N
Proof. Note that if X; = y, F); 2;, then
0 (Xl % e % Xk> = X 1Eo XoFsEy - - X1 By - - - EsEy X,
= 1By Ea Er2oys Es Es By - - - 21y B - - - Ea Bz
=0 <91®2192®"'®Zk1yk®2k) :
N N N N
In particular
9(A1®"'®Akl®zk) :9<a1®--'®ak+1),
M M M N N
where A; = a;Fy and Ay, = apErap41.
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For k = 0, Ey_,(a1) = E(a;). Assume the result holds for some k& > 0. Note that A, A, =
a.Era,41FE1 = 0a,FE(ay41)E) and A, Ey((Arq1)) = a,E1Ey(ar1Ey) = 6 'a,Fia,.1. Hence, with
the first of the two cases denoting £ = 2r — 1 and the second k = 2r,

Eu, (9 (a1 ®"'®@k+2>) = B, (9 (A1 ® - Ay ®Zk+1>)
N N M M M

)
610 (Al R QAA1 QR Ay ®Zk+1>
MM M M M

0 (Al R QAEN(Ari1) @ @ Ay ®Zk+1)
M M M M M

p
0 (a1 ® - ® a1 ®aE(ar41) ® 2@+ ® ak“)
N N N N N N

616 (CL1 @ QA @ Ar1Qr42 @ Gryg & -+ 'ak+2)
L N N N N N
O

Remarks 1.34. We could have proved many other properties of § with almost identical arguments to
those in Prop 5.12, but the result above is all that we require here.
We conclude with some further results on the multi-step basic construction of Theorem 1.25. We

first clarify a certain compatibility of the representations W]’?.

Proposition 1.35. Let j < k < 2j and let z € My. Then}(z) = ﬁf“(z).

Proof. Using the explicit formula for Werl(z) from Proposition 1.26 this is basically just a long exercise

in simplifying words in the F;’s. Here are the details.
Without loss of generality we may assume that & = 2j (just use My;_,_1 C Mpyj_j in place of
N C M).Forr >sletV,, = FE,E,_---Es;and forr < sletV, ; = 1. Note that
Elay = Virtar2Votr2,a43 - Vop—apr1-

We will make two very simple observations and then prove the lemma. First note that for a > d > b,
c>d+2,d> ewehave

(5) VaVedr2Vie = VaaVa—op Ve dr2Vi-ie.

This may be paraphrased as follows. Think of V. 412V; . as V.. with a missing term, or gap, at d + 1.
We could similarly talk or larger gaps with more terms missing. Then the equation above says that a
gap in one V propagates to the left into the previous V' and leaves a bigger gap in the original V. More
succinctly we could say “gaps propagate left leaving bigger gaps”. The proof is quite simple:

VaVedr2Vie = VapVearoEaVii.e
= VapEaVearaVa-1,e
= (EoEy1- EgEq 1 EqEy oFE4 5+ Ep) VegroVi1.
= (EoEq1-+ EqBq 2Ey 3+ Ey) VearaVa 1.
= VaaVi—2sVearaVi-ie-
Second note that fora > b > d, ¢ > b + 2 we have
(6) VawVert2Vi—1.a = Vo.aVepto-

which follows directly from the fact that the second and third terms on the left commute.
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With these preliminary results we can now begin the main proof.

0B, (Bio1) = 0F, (Vig11Visoa - Vaji1j41)
= Vig11 Vo2 - - Vo0 By, (Vojgnjst)
= Vig11Vjro2 - Vo0 Earyy (Eoji1) Vajj
= [Vig1,1Vig22 - - Vajj] Vajje
Iterating (5) from right to left
0By (E1y) = VigiaVigao - Vajoj-2Vaj1-1[Vaj;Vaj 1]
= Vit11Vitoz -+ Vajooj2Vaj15-1[Va;2:V2j-2,V2j-1,541]
= V}+1,1Vj+2,2 T V2j—2,j—2[sz—l,j—l‘/2j72j‘/§j—27j]‘/2j—17j+1

Vit Vitan - Vajoaj-alVaj1.252Vajaj-1Vaj2iVai31Vaj-111

Vier1Visao - [Vaj2-2Vaj12j-2Vaj—a-1]Vaj2iV2j-3,V2j-1541

= (Vi412)(Vjs24)(Vjs36V33) (VigagVsa) - -
o (Vajoo9i-aVaj—7 j—2) (Vaj_1.2j—2Vaj—s5-1)(Vaj2;Vaj—3.) Vaj—1j+1.
Iterating (6) from left to right,
0By, (El-1y) = Vie2lVit2aViiaeVasl(VieagVsa) -
o (Vajo9j-aVaj—7i—2) (Vaj_1.2j-2Vaj—5-1)(Vaj2Vaj—3) Vaj—1,+1
= Viri2[Vir23Viesel(VizasVsa) -
o (Vajo9i-aVaj—1i—2) (Vaj_12j-2Vaj—5j-1)(Vaj2Vaj—3) Vaj—1+1

= V}'+1,2Vj+2,3[V}'+3,6Vj+4,8v5,4] e
(‘/23'—2,2]'—4‘/2]'—7,]’—2)(‘/Qj—l,Qj—Q‘/Qj—B,j—l)(‘/23'72]"/2]’—373')‘/2]‘—1,]‘-1—1

Vit12Vir23Viesa- - Vaj1,Va511
= L,

Hence, for y € M,,
7T (@) = BN (2y Bl ) = 0 By (250 Eay, (Ei1,))
= 5jEz\Ajfj(ZyE[0,j]) = (2)y
]

Notation 1.36. From lemma 1.35 we see that if z € M, k < 2j + 1, then 7¥(z) = n(z) for all
k <1 <2j+ 1 and hence we will use 7; to denote this representation, with no reference to the algebra
M that is acting.

Pl‘OpOSitiOl’l 1.37. For R € M2j+1, 7Tj+t(R) =T (R) KRN (1dL2(M))®§V
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Proof. 1t suffices to prove the result for # = 1 and then iterate. Note that F|_; jjv; = v 11 E}y jyq1). Simply
observe
Ei 105 = Vit VieeoVisss - Vaj i Vo B By - - B
= Vit12E1Vjpo3EoVii3 4l -+ - Vo i1 Vo jrobj BjE; -+ - By
= Vis12Vjro3Vitsa- - Vaj i Vajr jpe B Eo - EjEj i EjEj - - BY
= Viy12En 41 E1
= Vjr1 B gyl

Now

(i gia) (g g
N N N
= 5j+1EA]\fjj“ (Rzyv12902 - - - 052541 B 1)) 0117510
= §"Ey, (Eﬁjﬁl (Rzyoizgvy - - 02541 By ) €j+1> Ci+1U5Tj+2
— 5?’*2713]\]\5;1?1 (Rr1012202 - - 052541 Bi1,5) €j410j42
= 5jEAA//[[jﬁl (RIE1U1$2U2 e 'Ujffj+1E[—1,joa7j+2)

Mo
= ¢’ 2j+1 VST : : )
=0 l;NQ+1 (1{$1U1I2U2 U]$]+1UJ+1$]+Qlﬁ1J+1D

= mi11(R) (x1 % e % fj+2) ;

where we use the Pull-down Lemma (Lemma 1.22) to obtain the fourth line and the initial observation
that £, jjv; = vj11E[1 j41) to obtain the sixth line. O

Corollary 1.38. 7T§-“ could be alternatively defined as follows. For R € My, 7 < k < 25 + 1, define
Ty (R) € B(L2(M;)) by

J

k—j—1
™ (R) ® (idzn) Y =7F_1(R)

where wF_| is the defining representation of My on L?(Mj,_,). This is the definition coming from the multi-
step basic construction as described in Enock and Nest [8] (see Prop 4.9 for details in the infinite index 11,
case).
k—j—1

Proof. R € Myj1,50 Tp—1(R) = 7y —j—1)(R) = 7;(R) (1%) (id)®~ e O
Subsection 1.5. Modular theory. The construction of planar algebras will not require all of the modu-
lar theory that we discuss here and it therefore possible to skip the next two sections and go immediately
to section 2. However, the following theorem is necessary to know that the modular operators on the
finite dimensional relative commutants that arise in section 2 are in fact the restrictions of the modular
operators on the spaces L?( M, ).

Modular theory involves a number of unbounded operators. However, the relative commutants are
invariant under the operators of the modular theory and finite dimensionality implies that the restrictions
of these operators to the relative commutants are bounded. We collect these and other technical results
below.

Theorem 1.39. Let Sy, be the operator T — * on ]\/4\;€ C L3(My, ), Ax = S;Sy. the modular operator.
Then
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(i) N’/ﬂ\J\/[k is in the domain of Sy, S; and Al for allt € C. N’/ﬂ\]wl~C is invariant under all of these

operators, and also invariant under Jj.

(ii) Ap(z) = (>, bEy(2b*)) and A = (Y, En(bz)b*) where B is any basis for M over N.

(iii) Sks1, Spiq> Je+1 and Ay (t € C) restrict to Sy, Sy, Ji, and A}, respectively on N’/H\Mk, and hence
will be denoted S, S*, J and A!.

(iv) Simr(N' N Mok 11)Sk = 7, (N' N Mayy1). More precisely, for = € N’ N Mayy1, Spm(2*) Sk has dense
domain in L?(My, ) and extends to a bounded operator on L?(Mj,, ) given by my(Ry.(z)) where
Ri(2) € N' N Moy is given by

Rp(z) =77+ Z B, (ebz)eb

beB

where e = e[_y ) implements the conditional expectation E]]y’“ and B is any basis for M}, over N.
Consequently Sy, - S, S}, - S and Jy, - Ji, are all conjugate-linear automorphisms of the vector space

7(N' 0 Moy 1) and A,;l/Q . A,lg/Q, A,lg/Q . A,;l/Q are linear automorphisms of wi,(N' N Moy 1).
(v) In addition to (iv), Sy - Sk, S} - S}, A,;l/Q . AIIC/Q, AIIC/Q . A;lﬂ and Jy, - Jy all map m,(N' 0 My) onto
Wk(M,I{ N M2k+1).

Proof. (i) Letx € N’ N Mj. Then Si(Z) = T € Nmk.
For all y € M

(@,9%) = p(yx) = > _pbEx(by)x) = > p(brEx(by))

b

=Y e a)by) = > (5. OB (a5)) ).

b

~

Hence = € D(S}) and S;(Z) = (>, bEn(2*b*)) which is thus independent of the basis B. Given
any v € U(N), vB is also a basis for M, over N and hence

v (Z bEN(x*b*)) v =) (vb)En(z"(b"0")) = Y bEn(z"D")

b

so that ), bEN(2*b*) € N’ N Mj. Consequently 7 is in the domain of A, = S.S; and A (7) €
NN M.
The fact that N’ N My, is in the domain of A} and invariant under it is a basic exercise in spectral

theory. There exists a measure space (X, ), a positive function F' on X and a unitary operator
v L3 X,u) — L% Mg, ) such that v*Agv = Mp, the operator of multiplication by F. As

—

v*(N'" N My) is finite dimensional and invariant under Mp, it has a basis { f1, ..., f,} of eigenvec-
tors of Mp. Thus there exist A; > 0 such that F'f; = A, f; and hence F' = ); a.e. on the support of
fi- This implies that F* = Al a.e. on the support of f; and hence v*(N’/ﬂ\]Wk) = span{fi,..., fu}
is in the domain of (Mp)" and invariant under it.

Lastly, J; = S_kA,:l/z so N’ N Mj, is invariant under J;..
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(ii) From above

Ae(T) = SpSiT = (Z bEN(:I:b*))A
AY@) = SiSE = (Z EN(bx)b*)A.
b

(iii) Let # € N’ N My. Obviously S;7 = 7* = Sy;17. To see that ;7 = S}, |7 observe that for all
Y € Myia

(Si7, ) = (Si# Bar, (1)) = (Ban,(0)",7) = ( Bar, (). )
= (" 7) = (Si%.0) -
From the above A7 = AyZ. The spectral theory argument in (i) implies that A} ;7 = A}Z.
Finally J, 17 = SkHAkilQﬁc\ = Sk, Vg = Ji7.

(iv) It suffices to prove this in the case £ = 0. Let b be a basis for M over N. Since Be; is a basis for M;
over M, there exist z;, € M with z = ), beyx;. Then for all y € M we have

(7) Soz"Sol = Soxy En(by*) = > (Ex(yb)z)
b b

which demonstrates that Syz* Sy has domain M which is of course dense in L2(M, p).
Next observe that

> Eulerb2)end’ = 3 Bur(eib2) Ex(by) = > (Ear(erbzEx(b'y)))

b

—

— Z (EM(eleN(b*y)Z))A = Eyl(e1yz)

= Z (EM(elybelxb Z Ev(En(yb) elxb))
b b

=73 (En(yb)as)

b

so that the bounded operator Ry(z) = 771>, Ep(e1bz)eib* agrees with Spz*Sy on its domain.
Ro(z) € N’ because 7 is clearly N-linear in y. Since S3 = 1, z + Syz*S is an automorphism of
NN M.

Taking adjoints, using the fact that Jo(N' N M;)Jy = N’ N M in addition to Sy = J0A1/2 =
Ay 12 ]y and Sg = JoAy V2 - A(l)/ ?Jo the second part of (iv) is reasonably clear. However, a little
care must be taken with domains.

For £ € D(S}) and y € D(Sy) = M we have

(Soy, 255€) = (£, 502" Soy) = (€, Ro(2)y) = (Ro(2)"¢,Y)

so that 2S3¢ € D(S) and S§zS3¢ = Ro(2)*€. Hence D(S52S) = D(Sg) and S;2S] extends to the
bounded operator Ry(z)*, which is in N’ N M;. Since (S3)? = 1, z + S;2S; is a conjugate-linear
automorphism of N’ N M.
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For § € D(Aéﬂ) =D(Sy) and 7 € D(Aal/Q) = D(S) we have
(85", 206 ) = (JoSin, 2JoSut) = (hy=Jo58, St

= <S_o§> (JOZ*JO)SSTI> = <SS<JOZ*J0)S§7775>
= (Ro(JozJo)™n, &) = (n, Ro(JozJo)§)

so that zAY2¢ € D(AY?) and A, 22AY2€ = Ry(Joz o).
Hence D(Aal/QzA(l)/2) = D(A(l)/z) and Aal/QzAé/Q extends to the bounded operator Ry(JyzJo),
which is in N/ N M;.

A similar argument shows that D(Aé/QzAal/Q) = D(Aal/Z) and Aé/QzAal/Z extends to the
bounded operator Ry(Joz*Jo)*, which is in N" N M.

In detail,

(5%, 205" n) = (JoSo&, =IoS5m) = (o= JoSin, Se€)
= (&, S5 (Jozdo)Som) = (&; Ro(Joz"Jo)"n)

so that zA; "/*n € D(AY?) and AY? 225" = Ro(Joz*Jo)*n.
Finally, since the two maps z — A, Y 22A(1]/ >and z — Aé/ 220 /2 are inverse to each other,
they are linear automorphisms of N’ N M.

(v) First note that Jo(N' N M)Jy = M’ N M, and so these two spaces have the same dimension. Next
let z € N’ N M. Since SpxSy is right multiplication by z*, which commutes with the (left) action
of M on L%(M, ¢), we have SyzSy € M’ N M;. This map is injective and hence, by a dimension
count, also surjective. The other maps can all be expressed in terms of these two and adjoints, so
also map N’ N M onto M’ N M;.

O

Remark 1.40. We will use Sy,(), Sj(x) and AL () to denote A; (S (Ax(z))),
AH(Sy(AR())) and A (A (Ag())) respectively. Note that this is quite different to the operator prod-
uct, for example Syx (more precisely denoted Sy (x)).

Subsection 1.6. The rotation operator. Exactly as in Jones [16] 4.1.12 we define a rotation operator
on the relative commutants. We prove that the rotation is quasi-periodic, namely p],:“ = A, We will
obtain this result again as a consequence of our work on planar algebras, but we include a self-contained
proof in this section.

Note that in the extremal II; case of [16] Ey;» below can be taken to be the trace preserving condi-
tional expectation onto M’ N My 1, but in the non-extremal type II case one must use the commutant
trace preserving expectation. In the full generality presented here such choices do not occur and the

correct path is clearer.
Definition 1.41 (Rotation). On N’ N M}, define an operator pj, by

sz(ﬂf) = 52EMk (Uk+1EM' ($Uk+1))~
Given a basis B for M over N, define r,]f on M, by
ri(x) = Eu, (vk1brvgiab?)
beB

where ¥ = 0 (1] @y T2 QN -+ QN Tpy1). By Prop 1.28, pip(x) = r2(x) for x € N' N M.
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Lemma 1.42. Forxz = 0 (:1:1 RTa @& ka) and B any basis for M over N we have
N °N N

7"1?(33) = Ze (EN(b$1)£U2 %IIJ:} % e %$k+1 %) b*) )

beB

Proof. The proof is exactly the same as Jones [16] 4.1.14:

* * *
Ty = (T01220g + - Vg1 ) V1 = 0 <x1 %) R TRl (1}\3]) 1) = L1V ToU) - - Ty 1

so that
ri(z) = Z Eng, (V102105 1 X205, - - - Tpq 1 07 07)

beB

= Z EMk (5Ek+1EN(bl'1>[E2U;; cee l’]H_lU)lkb*)
beB

= 3" Ex(be))aavp - wrsrvil’
beB

= Z@ (EN(b:m)xz Rr3Q - QX1 ® b*>
= N "N N N

Theorem 1.43. The rotation is quasi-periodic: pj ™ = A"

Proof. (i) First note thatifz = 0(x; Q22 QN -+ - Qn Tpy1) and Yy = O(Ypr1 QN Yk N - - - DN Y1), then
EN(ZUZJ) = EN(DflEN($2 s EN($k+1yk+1) e 'yz)y1)~
Proceed by induction. The result is true for & = 0. Suppose it is true for £ — 1. Let z =
0 (1 Qn o ®N - @y ) and let § = 0 (yr On Yr—1 QN -+ QN y1). Then x = Tvprgy; and
Y = Yr+105y. Note that vpzs1Yk1Vy = OEREN(Tki1Yk+1) and hence Eyy | (VkTri1Yk+1Vy) =
En(2gi1Yks1)- Thus

EN(QU?J) = E%k_l(jEMk—l(vkxk+lyk+IUZ)g>
= By (EEN(hiayi)D)
= En(@iEn(ze- - EN(Tht1Yrt1) - Y2)1)

(ii) Let B be a basis for M over N. By Lemma 1.27 By, = {0(b;, ®n - - ®@n b;,,,) : i; € 1} is a basis for
M, over N. Let x € N’ N M;. Then we can write x as

xr = Z CNe = Z 0 (bzl (]% e (]%) bik+1) ni17.“7ik+1

cEBy, U1y iht1
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where n. (or n;, .4, .,) are in N. Hence
pk(x) - Z 0 (E(bj1 bi1)bi2 % T % bik+1ni1’~--»ik+1 (]%) b;)
1155k 1,J1
k
(pk> i (JZ) = Z 0 (E<bjk+1E(bjk T E(bj2E<bj1 bll)blz) e bik)bik+1>nil7m,ik+1) ’
ik g1
J1s--5Jk+1
QCTRETN
= Z (g0 (g o)
%1 AAAAA Z]H—l
J1yees Jk+1

= Z En(cz)c*

CEBk
= A(2),

where the last equality comes from Theorem 1.39.

SECTION 2. THE PLANAR ALGEBRA OF A FINITE INDEX SUBFACTOR

We are now in a position to define the planar algebra associated to a finite index subfactor. By
Theorem 1.43 the rotation is not quite periodic in the general case and this requires us to change the
axioms of a planar algebra slightly. We will first define a rigid C*-planar algebra in which boxes cannot
be rotated, which then gives rise to an induced modular extension in which boxes can be rotated, but this
changes the action of the tangle in a specified way.

We show that the standard invariant of a finite index subfactor forms a rigid C*-planar-algebra. Along
the way we will see that the (quasi-)periodicity of the rotation is a trivial consequence of the rigid planar
algebra structure.

We show that any rigid C*-planar algebra gives rise to a spherical C*-planar algebra. As a corollary
we see that for any finite index subfactor there exists an extremal II; subfactor with the same (algebraic)
standard invariant, which recovers a result originally due to Izumi.

Finally we consider the inverse construction from a spherical C*-planar algebra with some additional
data to a rigid C*-planar algebra. Lifting this construction to the subfactor level we show that any rigid
C*-planar algebra arises from a finite index subfactor.

These results justify the focus on II; subfactors rather than more general inclusions, at least as far as
the study of the standard invariant of finite index subfactors is concerned. We see all possible standard
invariants of finite index subfactors by considering II; subfactors and if our interest lies only in the
algebraic structure without reference to Jones projections and conditional expectations we need only
consider IT; extremal subfactors with the trace-preserving conditional expectation.

Subsection 2.1. Rigid planar algebras. In essence the only difference between a planar algebra and a
rigid planar algebra is that we use rigid planar isotopy classes of tangles in place of (full) planar isotopy
classes of tangles. A rigid planar isotopy is one under which the internal discs undergo no rotation. The
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set of rigid planar isotopy classes of tangles forms the rigid planar operad P". A rigid planar algebra is
an algebra over P" in the sense of May [23], that is to say a set of vector spaces V,",V,” (k > 0) and a
morphism of colored operads from P” to Hom, the operad of linear maps between tensor products of the
V,=’s. We describe these ideas in detail below.

Definition 2.1 ((Rigid) planar k-tangle). A planar k-tangle is defined exactly as in Jones [16], except that
we require the boundary points of the discs to be evenly spaced, the strings to meet the discs normally
and the distinguished boundary segments can be either white or black. Thus the definition below follows
Jones almost verbatim. For simplicity when drawing tangles we will often draw the boundary points so
that they are not evenly spaced. In general diagrams will be drawn with the distinguished boundary
segment on the left. When this is not the case we will denote the distinguished segment with a star.

A planar k-tangle will consist of the unit disc D(= D) in C together with a finite (possibly empty)
set of disjoint subdiscs Dy, Ds, ..., D, in the interior of D. Each disc D;, ¢ > 0, will have an even number
2k; > 0 of evenly spaced marked points on its boundary (with k£ = k). Inside D there is also a finite set
of disjoint smoothly embedded curves called strings which are either closed curves or whose boundaries
are marked points of the D,’s. Each marked point is the boundary point of some string, which meets the
boundary of the corresponding disc normally. The strings all lie in the complement of the interiors D
of the D;, i > 0. The connected components of the complement of the strings in D°\ | ", D; are called
regions and are shaded black and white so that regions whose closures meet have different shadings.
The shading is part of the data of the tangle, as is the choice, at every D,;, ¢ > 0, of a region whose
closure meets that disc, or equivalently: a distinguished arc between consecutive marked points (the
whole boundary of the disc if there are no marked points); or a distinguished point which we will call p;
at the midpoint of the arc. Define o;, the sign of D;, to be + if the distinguished region is white and — if
it black.

A rigid planar k-tangle is a planar k-tangle such that for every point p;, © > 0, the phase relative to
the center z; of D, is the same. In other words the angle between the line from p; to z; and a ray in the
positive x-direction emanating from z; is the same for all s.

We will call a (rigid) planar k-tangle, with oy the sign of D, a (rigid) planar (0, k)-tangle.

Composition of tangles is defined as follows. Given a planar k-tangle T, a k’-tangle S, and an internal
disc D; of T with k; = k" and 0,(T") = 0¢(S) we define the k-tangle T o; S by radially scaling S5, then
rotating and translating it so that its boundary, together with the distinguished point, coincides with that
of D;. The boundary of D; is then removed to obtain the tangle 7" o; S.

Note: We will often use 0 and 1 in place or the signs + and — respectively. Sometimes we will drop the

sign completely in the case of 0 = + and use a  to denote a disc with o = —.

Definition 2.2 ((Rigid) planar operad). A planar isotopy of a tangle 7' is an orientation preserving dif-
feomorphism of 7', preserving the boundary of D. A rigid planar isotopy is a planar isotopy such that
the restriction to D;, ¢ > 0, only scales and translates the disc D;.

The (full) planar operad P is the set of all planar isotopy classes of planar k-tangles, k& being arbi-
trary. The rigid planar operad P" is the set of all rigid planar isotopy classes of planar k-tangles. Clearly
composition of tangles passes to the planar operad and to the rigid planar operad.

Remark 2.3. In a rigid planar tangle the phase of the external distinguished point p, is not important,
only the relative position of the internal distinguished points. Thus we could require that p, is the
leftmost point of D (relative to some underlying orthogonal coordinate system for the plane) and the
condition could then be stated as: for all ¢ > 0, p; is the leftmost point of D;.

The use of discs in the definition of tangles and planar operads is convenient, but we could contract
the internal discs to points and formulate the definitions in these terms, or use boxes (with p; on the
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left edge) in place of discs which would lead to another reformulation. We will use these descriptions
interchangeably.

Definition 2.4 (Rigid planar algebra). A rigid planar algebra (Z, V) is an algebra over P". That is to say
we have a disjoint union V' of vector spaces V",V (sometimes denoted V0, V}! respectively), & > 0,
and a morphism of colored operads from Z : P" — Hom(V'), the operad of linear maps between tensor
products of the Vki’s. In other words, for every (equivalence class of) rigid planar k-tangle 7" in P" there
is a linear map Z(T) : ®_,V;”" — V;7° (which is thus unchanged by rigid planar isotopy). The map Z
satisfies Z(T o; S) = Z(T) o; Z(S).

For any tangle 7" with no internal discs, the empty tensor product is just C and Z(T') : C — V= and
is thus just multiplication by some element of V. We will also use Z(T') to denote this element.

We also require finite dimensionality (dim(V;*) < oo for all k), dim(V;") = 1 and

£(0) +(0)

(note that these tangles are a white disc with one closed string and a black disc with one closed string
respectively - we have drawn the discs as boxes to make this clear). Finally, we require that

Z (annular tangle with 2k radial strings)
be the identity (for each £ there are two such tangles, either oy = 0 or oy = 1).

Remarks 2.5. Without the last condition in the definition we would only know that Z(annular tangle
with 2k radial strings) is some idempotent element ¢;° in End(V;"). However, by inserting this annular
tangle around the inside of any internal k-disc and the outside of any k-tangle it is clear that the planar
algebra would never “see” (1 — ef)Vki. Thus we may as well replace Vki with ekai and then the annular
radial tangles act as the identity.

VX becomes an algebra under the multiplication given by the tangle below. The thick black string
represents k regular strings.

F1GURE 1. The multiplication tangle

For example, for k = 3 we have the following tangles (for V;" and V™ respectively). The marked points
have been evenly spaced in this example as they should be, but for simplicity we will usually draw the
marked points with uneven spacing.
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The multiplicative identity in V,f is just the image of the tangle below (more precisely Z of this tangle
applied to 1 € C, the empty tensor product).

Note that V" is now a 1-dimensional algebra with identity given by Z(empty disc) (the picture above
with no strings), hence V;* may be identified with C with Z(empty disc) = 1.

With V5" thus identified with C, Z (@) =¢dand Z (@) = 0 for some 01, 02 € C\{0}. Unless

stated otherwise, we will require §; = 02 s (one can always “rescale” to achieve this).
The fact that § # 0 implies that (i : V5 — V,fH defined by adding a string on the right, is injective.

Similarly fyki : Vki — Vi1 F by adding a string on the left is injective.

Definition 2.6 (Rigid planar *-algebra). For a (rigid) k-tangle 7" define T™ to be the tangle obtained by
reflecting 7" in any line in the plane (well-defined up to rigid planar isotopy). A rigid planar *-algebra
is a rigid planar algebra (Z, V) equipped with a conjugate linear involution * on each V= such that

Z(T) (01 ® -+ @uv)]" = Z(T*) (0] ® -+ - @ vy,).

Definition 2.7 (Rigid C*-planar algebra). A rigid C*-planar algebra is a rigid *-planar algebra (Z,V')
such that the map ® = ®F : V;* — C given below is positive definite on V", ie. ®(2z*z) > 0 for
0#xeVeE

As usual the thick string represents £ strings and we have suppressed the outer 0-disc.

Remark 2.8. Let (Z, V) be a rigid *-planar algebra. Note that if ®; is positive definite then so too is @},
by adding a string on the left and applying @}, ;. Hence it suffices to check that ®; is positive definite.

Every V,© is semi-simple since for any nonzero ideal N take nonzero x € N, then z*ra*r =
(z*z)*(x*r) € N? and is nonzero by positive definiteness of ®. Hence every V" is a direct sum of
matrix algebras over C or, equivalently, a finite dimensional C*-algebra.

Definition 2.9. Define ®, : V.= — C by
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o' =7

Define jk(r) =7 (TJ,ST)) : Vk(r) — Vk(rJrk) where TJ,ET) is the following tangle (r = 0, 1)

TJk = *

Remarks 2.10. Note that 7" is invertible, with inverse Z ((T J ,5’“*’“)) ) J has the following proper-
ties. Let x € Vk(r). Then, with indices suppressed,

o J(xy) = T(y) T (x);
o (J(@)" =T a);
* (T (x) = (T " (x)) = ¥'(w);
o (I (x)) = (T (2)
o O(zy) = (I (2)T~

=
=
Il
i
3
&
2
=
o
o
e
o
c
7]
e

Lemma 2.11. Let (Z, V) be a rigid C*-planar algebra. Then & = @), : V;= — C is positive definite.
Proof. For nonzero x € V;* lety = J(x) # 0, then
0 < ®(y"y) = (I (2))" T(2)) = ®(T '(27)T (2)) = ¥'(a"x).

O

Remarks 2.12. The requirement that an annular tangle with 2k radial strings act as the identity in the
definition of a rigid planar algebra is not necessary for a rigid C*-planar algebra. Let « = Z(annular
tangle with 2k radial strings). Then ®(za(y)) = ®(zy) for all z € V;* and a(x) = z by the positive
definiteness of ®.

or = 0 *®; and ¢}, = d*®}. are normalized so that (1) = ¢} (1) = 1 and both ¢ and ¢’ are
compatible with the inclusions ¢ : V= — V,j_il andy: V;F — Vi
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Notation 2.13. For r = 0,1 let V;(Z) = fy,Ef_ﬁl)’y,(f_)Q . V,ET_*]{;%,ET_T ) (Vk(:r] )) denote the subspace of

Vk(T) obtained by adding j strings to the left of Vk(i;j ) (where all upper indices are computed mod 2). In
other words the image of the map defined by

—
Call this map the shift by j. ’ k-

Let wfk denote the Radon-Nikodym derivative of (¢’ )f with respect to i on V;j,i Thus wj.fk is the
unique element in Vjik such that ¢'(x) = gp(wfka:) for all x € Vﬁ wj-fk exists because ka is finite
dimensional and ¢ is positive definite. By the positive definiteness of ¢/, wjfk is positive and invertible.

Let w,f = w,f_lvk and zki = wgfk. As mentioned earlier we will sometimes suppress the + index and
use  in place of —. Set w = w; = w;, W = w; = w; . Then wsy,,; is just w with 2r strings to the left
and wy, is @ with 2r — 1 strings to the left. i.e. wo, 41 = (Y1) (w) and wy, = (v 4H) " 4~ (D).

Lemma 2.14. 1. w = (jl)_l (w™) =

2.z, = wiws - - - Wy, and is thus given by

zZ, = w w w w

= w w w w

Proof. 1. For x € V7, ¢1(J; M (w ™)) = @)(w TN 2)) = ¢1(J7H2)) = @ () and hence w =
(F)" (w™).

2. Lety = wjwe - - - wy, =
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Then, for x € V,", ®(yz) =

([
Definition 2.15. Define A,f : Vki — VkjE by A = J2. More precisely A,(:) = jk(Hk) o jk(r).
Az) =
Lemma 2.16. Forallz,y € V=,
plry) = pyAx)) = o(A7 (y)2),
Play) = ¢yA (@) = ¢ (Ay))
Proof. First
plry) = &' (T ()T () = (T (T ()T (y))) = ¢(yT*(x))
and because @ o J% = ¢’ 0 J = ¢ we also have p(zy) = ¢o(J ~2(y)z). Secondly
¢ (zy) = (T (2)T () = p(yT*(x)) = (T2 (y)2).
0]

Remark 2.17. This result shows that A is in fact the modular operator for (V;, ¢) and A~ the modular
operator for (V,5, ¢').

Corollary 2.18. A, y is a positive definite operator on L*(V,*, ¢) and for x € Vﬁc andt € R, A@r,k)ﬁf =

—t/2 2\
(wj,k ijk) ’
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Proof. A; is positive definite because, for nonzero = € v,
(Ax),2) = ¢ (" T*(x)) = ¢' (T ()T (2")) = ¢ (T (2) (T (x))7) > 0.

Let W = wj ;. The result is true for ¢ = 2 because for all 7,y € ka

p(Way) = ¢'(zy) = ' (YA (x)) = o(WyA ™ (z)) = o(A*(2)Wy),
using Lemma 2.16 twice. Hence Wz = A~%(z)W so that A=%(z) = WaW ! and also
A?(x) = W laWV.
To prove the result for general ¢ we will first show that z — W=°2W? is a positive operator on
L?(Vh, @) for s € R. Note that A*IWs = W' (W?*)W = W* so that W* is an eigenvector of eigenvalue

1 for A? and hence also for all A" since A is positive. Therefore W* is in the centralizer of ¢ on V"
since, for all z € V,:r,

p(Wx) = p(zA(W?)) = p(zW?).
This implies that for s € R, A, : 2 = W™*zWW* is a positive operator on L*(V}, ©):
<W—sst7 l’> _ QO(.T*W_SIWS) _ (p(Ws/2.T*W_SIWS/2) > 0.
Thus {A,} is a continuous one-parameter family of positive operators on L*(V,, ¢), and A* = A;. A

simple spectral theory argument implies that A" = A,  for all 7 € R and so At(z) = W2z W2, O

Corollary 2.19. If ¢ is tracial then A = id, ¢’ is tracial and the rotation operator py, : Vki — Vki defined
below is periodic.

pe =2

Subsection 2.2. Subfactors give rigid planar algebras. In this section we extend Jones’ [16] result
that the standard invariant of an extremal finite index II; subfactor has a spherical C*-planar algebra
structure.

Theorem 2.20. Let (N, M, E) be a finite index subfactor. Let V. = N' N M;_; and V,” = M' N M;.
Then V has a rigid C*-planar algebra structure Z V") satisfying:

(1) 6 =0, = 6 2 Ind(E)V2.

(2) The inclusion maps Lf : Vki — Vkil are the usual inclusion maps N' N My_1 — N’ N My, and
M' N Mk — M/ﬂMk_H.

(3) The map ~y;, : Vi, — Vi, is the inclusion map M' 0 My, — N' (0 M. The map~;f : V,\ — Vi,
is the shift map sh : N' 0\ My_y — M| N My, defined by R € Endy_. (L*(M;)) — id®x R €
Endag, - (L*(Mj41))-

(4) The multiplication given by the standard multiplication tangles agrees with the multiplication on the
algebras N' N M.
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(5)

\_/
' :56k:Ek
[
k kE+1
(6)
[]- ]
:(5EMk712N/ﬁMk—>N/ﬂMk_1
L[]
~——
(7) b

= 0Eyy and in general = §HIEN,

1

J+

The rigid C*-planar algebra structure on V' is uniquely determined by properties (4), (5), (6) and (7) (for
j=1)

Remark 2.21. As a consequence of (6) and (7) we see that ¢ and ¢’ coming from the planar algebra
structure agree with those already defined on the standard invariant.

Proof of Theorem 2.20.

Given a k-tangle 7" with internal k;-discs Dy, ..., D, and elements v; € Vk‘? we need to define
Z(T) (1 ®---®v,) € V7° and show that the element we define is independent of rigid isotopy of 7.
Finally we need to show that Z is a morphism of colored operads.

Our line of proof will be very close to that of Jones [16], Section 4.2, although our construction
will differ slightly. The advantages of this construction are an explicit description of the action on
L2(M;) and the fact that the construction will also apply to the case of bimodule homomorphisms
Hom,_.(L?(M;), L?(Mj)) rather than just endomorphisms End._.(L?(M;)).

Consider first the case of a (+, k)-tangle 7. We will define Z(T") (v; ® - - - ® v,,) which is an element
of Endy_ps,(L3(M,)) = N' N My, 4, where k = 2r + ¢, = 0, 1.

We will say that a tangle is in standard form if it is a vertical concatenation of basic tangles of the
following three types:

Any rigid planar (+, k)-tangle can be put in standard form by rigid planar isotopy.

Note that the basic tangles have a different number of marked points at the top and bottom of the
box. A tangle with sign o, 7 marked points at the bottom and £ marked points at the top will be called a
(0,7, k)-tangle.

It may seem that we are introducing more general types of tangles here, but we are really just used a
variety of “multiplication” tangles rather than just the standard one in Figure 1. A (o, j, k)-tangle can be
considered as a (o, j%k)—tangle together with additional data given by j. The additional data determines
the type of multiplication to be used. For example multiplication of a (5, 1)-tangle and a (3, 5)-tangle is

given by
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>3

k k+1 - <
\_/
T, = TEy, =
i
g kk+1
p
X
TSk,l,p:
-]
N =~

In order to define Z(7') for a general rigid tangle we will first define it for the basic tangles. Given a
basic (+, 2j+1+¢, 2k+1+t)-tangle (¢t = 0, 1), Z(T) will be an element of Homy_, , (L2(M;), L?(My)).
We first need a preparatory lemma.

Lemma 2.22. Define o : L*(M) — L2(M,) to be & times the inclusion map. Identifying L*(M,) with
L2(M)®yL2(M) using uy from Proposition 1.29 allows us to write v asa(x) = Y, xb@yb* = Y, b yb*x.
Define mapsﬁ,g cLA(M) — L2(My) by B iz — 2@y 1 = xEl,g 1 = 1®yvax = Ex
(note that id @y B = B @y id). Then a3, 3 are all continuous, « € Homy_ (L2(M),L2(My)),

B € Homy—y (L*(M),L*(M,)), B € Homy_p (L*(M), L*(M;)) and
af =dey xRy Yy
N

B w @y wB(y)

B e @y Ba)y

Proof. As we noted above, « is just § times the inclusion map, so « is continuous and o* = dey. Thus
Ses (zEvy) = 62Ey(zery) = zy. Hence a € Homyy_ yy (L2(M), L2(M;)) because inclusion L2(M) <
L?(M) preserves left multiplication by M and also the right action of M (since Ji |12y = Jo).

Now [ is continuous because p(F1x*x E1) = dp(En(z*2)Ey) = p(Enx(2*z)) = p(z*x). So f*(xQxN
y) = xE(y) because (r @y y,z Qn 1) = ¢ (E(z*1)y) = ¢ (z*zE(y)) = (zE(y), z) . Thus [ is clearly
left M-linear. To show right N-linearity observe that

N N N N N
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8= J13Jy and hence E is continuous and N — M linear. Finally g*(x ®n y) = E(z)y because
(s@m1es) = Blow) = B 0
We can now define the elements of Hom,._, (L?(M;), L?(M})) associated to each basic tangle.
Z(Tlyy) =672 (id)* ®a®id®id-- ®id
N N N N
FRideide- - ®id i=1,
A (T]2z‘—1,p) - 61/2 X ]\é@i—Q N N . N . )
(id)* @ RKIAdR---®id > 2
N N N N
Z(TEyy) = Z (TIip)"
Z (T Sy, R) = () ® R®id®--- @id
(T'S2irt0p) (R) = (id) % (ng’l % %1
Lettingz = 21 ® 22 ® - - - ® %, (p = 2k or 2k + 1) we can see these maps explicitly as
N N N
Z<T[2’L,p) xl—>571/21’1®"'®$171®l’1b®b*®xl+1®...®xk
N N N N N N N

:5_1/2$1®"'®$i—1®b®b*l’i®xi+l®"'®xk
N N N N N N

N
51/21®I1®$2®"'®$k izl,
Z(Tly_1,) : 7 NoNoN N
(Thi-1,) Ml @ 1 RLRE, Ry G > 2
N N N N N

Z(TEyp) x> 0TV ® R @ TTi @ Ty @ @ Ty
N N N N N N

S2E(21))Ty @ 23 ® -+ - @ % i=1,
N °N N

Z (T Ey;_ ST
(L Eni1) 0 @ s Qa1 B(1) Q@i @ Qg 0> 2
N N N N N

Z (TS 2j-1p) (R) : x — 21 % T % [Wj—l(R) <$i+1 % e % xi+j):| @ Titj+1 % e % Tk

Z (TSsis1,2j4tp) (R) 1 2 = a1 % ER¥ % % {%‘(R) (iUz'H % o % xi+j+1)} ® Tigjt2 %) e % T,
where ¢t = 0 or 1.

Finally let us check that a basic tangle with 2k —¢ lower strings and 2k —t or 2k —t+2 upper strings de-
fines an element of Endy_j, , (L*(M},)) or Homy_ps , (L2(My), L?(Mj+1)) respectively (recall that we
are currently only considering the case of tangles with oy = +). All of these maps are left-/N-linear and all
are right M -linear except for three cases. Z (T Ey;—1) = (id)®3\72 @y fand Z (T1y—1) = (id)®§vi2 QN B
are both N-linear only on the right, but this is all that is required since both have an odd number of
strings. Z (T'Sai12j+1-1) (R) = (id)®§V ®p R is also N-linear only on the right, but again has an odd
number of strings.

Now, given a rigid planar (4, 2r +t)-tangle T' (where ¢t = 0, 1) we can define Z(T) (v; ® - - @ v,,) €
Endy_n_,(L*(M,)) = N’ N My, by putting T in standard form by rigid planar isotopy and then
composing the maps we get from the basic tangles in the standard form. We need to show that the
element of Endy_ys_, (L?(M,.)) that we obtain is independent of the particular standard picture we chose.
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Then the map Z will not only be well-defined on a tangle 7', but invariant under rigid isotopy as any
two isotopic tangles can be put in the same standard form.

At this point our argument starts to closely resemble that of Jones. If we have two standard pictures
that are equivalent by a rigid planar isotopy 5 then, by contracting the internal discs to points and putting
the isotopy in general position, we see that the isotopy results in a finite sequence of changes from one
standard form to another. These changes happen in one of two ways

(i) The y-coordinate of some string has a point of inflection and the picture, before and after, looks
locally like one of the following.

(1) .. .. (2)

24 24 2i+1 2i+1

G = 4)

~— ~— ~— ~—
B 21'&.1 ] 241, . o2 ) 2%
(ii) The y-coordinates of two internal discs, or maxima/minima of strings (which we will refer to as

caps/cups respectively), coincide and change order while the z-coordinates remain distinct.

In case (i) note that a*(f = a*g = [f*a = g*a = id. Then

(1) This is either (a*ﬁ) ©n (id)®N = id (i = 0), or (i > 1),

(id)®V ' ® Kid ® a*) (ﬁ ® id)] ® (id)®~ = (id)®v @ a*f @ (id)® = id.
N N N N N N
2) (1d)®v ® fra ® (i) = id.
N N _
(3) (id)®v ® o*f ® (id)®~ = id.
N N

(4) Tfi = 0 then (E*a) ®n (id)®~ = id. Fori > 1,

(id)®V ' ® [(5 ® id) (id ® a)] ® (id)®v = (id)®v ® f*a @ (id)®V = id.
N N N N N N
In case (ii) we have two cups, two caps or a cap and a cup passing each other. It is trivial to see that the
two compositions of maps from the basic tangles are the same in cases when the caps/cups are separated
and affect different parts of the tensor product. Otherwise one uses associativity of the tensor product
and the fact that Y xb @y b* = > by b*x.

In the case of one box and one cap/cup the maps again affect different parts of the tensor product
except for the following two cases (and their adjoints).

Q) [T T ﬂ @) [T~ » ﬂ 7]
R - R - -

R R

H\K\ T K\\H - 11

, 2i+1 2i+1 o204l 2i+1 .
In case (i) we may assume that there is at most one string to the left of the box since any other strings

involve parts of the tensor product where the tangles act as the identity. Then the first map is R(z; ®n
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© - QN Ti_1 N x;Ti41) while the second is R(z7 ®p -+ - @y x;)x;11. The two expressions are the same
since R € End_j,. In (ii) we can similarly assume that ¢ = 0. Then R(z122 ®n 73 Qn -+ - Qn Tj) =
T1R(22 N 23 @n - - - QN x;) because R € End,_.

The last case to consider is that of two boxes. The only case which does not involve distinct parts of
the tensor product is the following.

1S R

Using the previous cases we see that the following pictures represent the same linear maps.

_ N |—|G]

U

This completes our argument that Z(7") does not depend on the choice of standard picture for 7" and
is thus also rigid isotopy invariant. For (—, k)-tangles just add a string to the left and hence obtain an
element of N’ N M;. Choose a standard picture for 7" which leaves this string straight up. Then the set
of basic tangles which make up 7" cannot include 7’1, ., T'E; , or T'Sy . .. But these are the only basic
tangles defining maps that are not M —linear. Hence we have an element of M' N M.

Z is thus a map from P” to Hom (V). It is clearly an operad morphism as we have defined Z by
composition of linear maps. The *-planar algebra property is also obvious from the way we have defined
Z. Thus (Z,V) is arigid *-planar algebra. It remains to prove that properties (1) through (6) are satisfied.

) n=2 ( ~ > (612n) = 6En(n) = én (n € N).

Similarly d =  because Z ( Q) € Endy;_ s (L2(M)) is given by

(1) 01 = 0 because Z ( O

+(0)e(

(J

)r-1(%

> (51/2 be N b*) — 51 beb* — 6.
b b

(2) L;Hl : N'N My, — N' N Mo is the usual inclusion map by construction (both (2k + 1)- and
(2k + 2)-boxes are defined by their action on L2(M})).
L;k o N "N Mag+1 — N’ N Moy 5 involves an additional tensoring with the identity on the right,
but by Prop 1.37 this just changes the representation 7, on L*(M}) to 7,1 on L?(My,). Hence
Lo 4 is also the usual inclusion.
The result for ¢, is then immediate.
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(3) v, : Vi — Vi1, is the inclusion map M’ N M;, < N’ N M;, by construction.

v maps R € N' N My_; to id ®y R. By Prop 1.37 m;11(M;) = mo(M1) ®n (id)®§V and hence
idey R € M{ N Mk+l-
(4) By construction stacking boxes is multiplication of the corresponding linear maps.
(5) We want to show that Z (T Iy 1) Z(T Ex k+1) = Ek. By (2) it suffices to show that Z(T'Ij, o) Z (T Ey 21) =
Tr—1(Ey). Let x = 21 ®p - - - ®n . Note that by definition

@ @r, 1 BX,)®-Qx, k=2r—1
N N N

0V @ Qut @ Qay, k=2r
N N N N

=2

Z(TEyo,)x =

so that Z(T Ej o) is simply 0'/2E};, ,, using Proposition 1.33. The map Z(T'I; o) is the adjoint of
Z(T Eja1,), which is just 6'/2 times the inclusion map. Hence Z(T'I; o) Z(T Eyor) = 6mp_1(e) =

kal(Ek)-
(6) Using (5) we have

- I
X = Ek+1xEk+1 == 5Ek+1E1\/fk71(x) = 5 EMk—l (SE>

(1] [ |

—— S
k k

We then apply a tangle to both sides to close up the caps and cups, which simply yields §%. After

dividing by 6% we obtain

Z = 6EM1€71<$)

(7) Let R € N’ N My, or N’ N Moy 1. Then (adding a string on the right if necessary)

A R = Z (T E22k+2) (id % R) Z (T1z1+2)
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Calling this element S and letting z = ;1 ®y - - - @ Tx+1 We have
St = 7 (TEaak+2) (id ® R) (5_1/2 Z bRV Qra® - ® $k+1>
N —~ N N N N
= 7 (T Esor+2) (51/2 Z b® R <b*l’1 RTy X X Tt )
~ N N N N

=51y bRV
Z < ml%@% %l’kﬂ)

b
= 07" bRV'T = 0Ey(R)E
b

which proves that S = 0 E,;(R) as required.
An immediate consequence is that F, (isz(M) RN R) Ey = Ey (id @y 0Ey(R)), as we see below.

Applying this to N C M; we obtain
(8) Ej2i+1) (idL%Mj) Q R) Eljajr1) = Ejjzj+) (idL‘Z(Mj) ® 5j+1EM§-(R))

where E; ;1) is one of the (scaled) multi-step Jones projections from Theorem 1.25. Multiplying out
the expression defining E; 2;11] in terms of F;’s we obtain

. .M o .
Eljojt) =

S~ >~~~
j+1 Jj+1

Writing a thick string for 7 + 1 regular strings, equation (8) yields

\J

R =0 By (R)

and hence
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— §itl — §itl

which completes the proof of (7).

The proof of uniqueness is exactly the same as that in Jones [16] 4.2.1. The only difference is that our
property (4) is not required by Jones because it is built into his axioms.

O

Remark 2.23. The method of proof in (7) yields more general results. In fact any equation involving
diagrams that holds for a general finite index subfactor will also hold with thick strings (i.e. multiple
strings) in place of regular strings. Let us loosely describe the procedure. By introducing extra caps
and cups at top and bottom and by inserting additional closed loops we may assume that any tangle
has a standard form made up of shifted boxes, 7'S, and Temperly-Lieb tangles. Note that the process of
inserting closed loops can be accommodated simply by dividing by ¢ and addition of caps/cups at top
and bottom can be inverted by applying an annular tangle to turn these into closed loops.

We can thus write an equivalent equation in terms of shifts (i.e. tensoring with the identity) and
Jones projections, with no reference to tangles. Applying this to N C M; we can then convert back to
an equation in terms of tangles, but a shift by 2 becomes a shift by 2j and the Jones projections are

—— N —
KG+1) g+l
We thus obtain the result for thick strings.
Proposition 2.24. For R € N' N My, = V;,;JFQ,
Jon+2(R) = SERSy, jzﬁm(]ﬁ = Sp RSk
where S), on L2(M,,) is the (in general unbounded) operator defined by T — z*.

Proof. For k =0

I (R =2 R r® R(b b*
® o) [(Fr5m0)s

Now for any R = cejd € My,
> Ex(zR(b)b" = Ey (scEy (db))b* = En(zc)d = (R*2*)" = SoR"SoZ.
b b

&)
I
N

= Ex(zR(b)b".

b

Hence J, '(R) = SoR*Sy. Since S? = 1 we also have J»(R) = S R*S;;. The general result follows, as
described in the previous remark, by amplifying to the j-string case. O
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Remark 2.25. This extends the result of Bisch and Jones [4] Prop 3.3 that J(R) = JR*J in the finite
index extremal 1I; case.

Corollary 2.26. The shift map is also given by
sh(R) = To 4 Tokr2(R) = Ss1 (SeRSk) Skt R € N'0 M.
Proof. The first equality follows from

and the second is then immediate by Prop 2.24. U
Finally we show that our two definitions of the rotation agree.

Lemma 2.27. The rotation defined in Corollary 2.19 agrees, in the case of a rigid C*-planar algebra coming
from a finite index subfactor, with that in Definition 1.41.

Proof. Simply draw the appropriate tangle for 2 Eyy, (vg41Epr (2vk11)). First note that vy, is given by

£

and hence

0% B, (Un1 Ea (2041)) =

O

Subsection 2.3. Modular structure. Let (27, V') be arigid C*-planar algebra. We will extend Z to the
full planar operad P. Let 7" be a k-tangle with internal discs Dy, ..., D,. Take any planar isotopy h;
taking 7" to a rigid planar k-tangle Tj. Let 6; be the amount of rotation of D; under h;. Define

__r —61/27 —0n /27
2r) (g o) = 2700 (AL 00 89 A5 0).

Proposition 2.28. Z(T) is independent of the choice of h and Tj.

Proof. We use the same argument as in Jones [16]. We can surround each internal disc D; with a larger
disc D; such that for all ¢ € [0, 1] the images of these larger discs under h; are disjoint and do not intersect
any closed strings. Let x; be the center of D;. Then there exists > 0 such that D(h:(x;),r) C hi(D;)°
for all ¢. Define a rigid planar isotopy ¢ in three steps
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1. Radially shrink D; to D(z;, ) while keeping R?\ D? fixed.
2. Take h; on RQ\IN);’ and translation by h;(x;) — x; on D(x;,r) and interpolate in any way in between.
3. Radially expand D(z;,7) + hi(x;) — z; to hy(D;) while keeping R?\ A (D;)° fixed.
Then Z" (¢~ (1)) = Z"(Tp), so following h with g~! we may assume without loss of generality that &
is the identity outside 5;’

Suppose we have another such isotopy h taking T to a rigid planar tangle 7. Then the rotation of
D; under h is 6; = 6; + 2xl; for some I; € Z.

h~! followed by h is a planar isotopy taking T} to T that is the identity outside E;’ and that rotates
D; by 2rl;. The mapping class group of diffeomorphisms of the annulus that are the identity on the
boundary is generated by a single Dehn twist of 27r. Hence the difference between Ty and Ty, is Al(ak)
inside D, so

— ! . L
TO = <<T() o1 A(Lhkl)) Og A(?‘J’Q,kg)) <0 A(Un,kn)’

Z"(To) = (Z"(Tp)) o (Al(fn,kl) - Al(’&,m))
and hence

r /7 —0;1 /27 —0, /27 r 11—01 /27 lp—0n /2
2/(o) (S0 @0 8 0)) = 20 (00) (Al 20 @0 8 )

r —01 /27 —0, /27
= Z"(Ty) (A(m{;l) (0) @ @ A (vn)) .
O

Remark 2.29. Now that Z is well-defined, considering any two tangles 7" and 7} connected by a planar
isotopy that rotates the internal disc D; by 6;, we have

o —61/27 . —6n /27
Z(T) (Ul Q- Un) = Z(1v) (A(al,kl) (L) @@ A(an,kn)(vn)) '

The extended map Z is a mapping the set of all planar k-tangles, modulo rigid planar isotopy, to
Hom(V'). We still need to establish that Z is an operad morphism.

Proposition 2.30. Forr € R,

(A(go7k))r Z(T) (Ul (]% e (]% ’Un) = Z(T) ((A(Ul,kl))rvl (]%) PN (]%) (A(0n7kn))r7}n) .

Ol v; = (A(Uivki))_ei/% (A(Ui,ki))r v;, it suffices to prove the result

Proof. Since (Ao, k) (A(oskn))
for T € P". Recall that (A, 1) = (z(gi’ki))_”2 (-) (,z((,mi))r/2 and hence it suffices to check the
result for basic tangles, with A" replaced by (z(1)) Tz (-) (z(m))r/ *fora (0, j, k)-tangle. Assume that
0 = +. Recall that 2, = w; - - - wy, and that the w;’s commute, so z; = wj ---w;. Let s = /2. Then
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—s s _
Zp+2T[2i71,ng = U

p

SO Z;_,'_QT]QZ‘_LI)Z; = T'Iy_1, and similarly ZSHTI%I,Z; = T'Iy;,. Taking adjoints gives the result for

TEy . For T'Sk,, the result is trivial. The result for (—, k)-tangles follows by symmetry. O
Corollary 2.31. Z is an operad morphism: Z (S o; T) = Z(S) o; Z(T).
Definition 2.32. We call the map Z the modular extension of the rigid planar algebra (Z7, V).

Remark 2.33. The modular extension (Z, V') is not a planar algebra because tangles that are planar
isotopy equivalent need not define the same linear maps, but the difference comes down to rotations of
the interior discs and is thus controlled by the modular operators A. In turn all the modular operators
are controlled by w, the Radon-Nikodym derivative of ¢ with respect to ¢’ on V;".

Corollary 2.34. If ¢ is tracial (for example in the case of (ZN-ME) V(NME)) for q finite index 11, sub-
factor with trace-preserving conditional expectation E) then A = 1, ¢’ is tracial and Z is invariant under
full planar isotopy so that we have a true planar algebra structure on the standard invariant.

Subsection 2.4. From rigid to spherical and back again. From a rigid C*-planar algebra we have
seen how to form the modular extension where we are allowed to rotate the boxes in a tangle but must
pay a price in terms of A for doing so. We will now see how to modify Z to obtain a spherical C*-planar
algebra.

Let (Z",V) be a rigid C*-planar algebra, (Z, V) its modular extension. Given a planar tangle 7" and
a string s : [0,1] — R? in T define O(s) to be the total angle along s, with s parameterized so that s
bounds a black region on its right. ©(s) may be computed as O(s) = fol i—‘fdt where ¢(t) is the angle at

s(t), or as ©(s) = fOL rdl where L is the length of the curve, s the curvature and di the length element.

For example the string below has ©(s) = 7.
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For a planar tangle T presented using boxes, define a spherically averaged tangle 1(T)) to be a tangle
obtained from 7" as follows: on every string s insert a (4, 1)-box containing w~®®/4", Then define
Z%°h . P — Hom(V) by Z*M(T) = Z(u(T)).

Note that ;(7") is not unique, but 7' — Z(u(7")) is well-defined because the position of the inserted
(4, 1)-box does not affect Z (u(T')). To see this observe that moving the box along the string may change
the angle of the box by some amount 6, but

A;i/?ﬂ (wf®(s)/47r) _ w79/271'wf®(s)/47rw9/27r _ ,wf®(s)/47r'

Remark 2.35. Note that it is important that we use boxes rather than discs at this point. If we defined
7%Ph a5 above, but used discs rather than boxes, we would introduce a multitude of complications. For
example the multiplication tangle would be different under Z*?® and would not be invariant under the
standard embeddings of V; in V;;;. Of course we could formulate a definition in terms of discs, the
essence of which would be using not ©(s) but the difference between ©(s) and what it “ought to be” for
a string joining those two points, but the book-keeping is much cleaner with boxes.

Theorem 2.36. (Z°P", V) is a spherical C*-planar algebra with §*°" = \§ where A = p(w'/?).

Proof. Z°P! is invariant under rigid planar isotopy since the total angle along a string does not change
under rigid planar isotopy. If the initial angle is 6;,;; and the final angle is 05, then the total angle is
Ofn — Oinit + 27l for some [ € 7Z. Under a rigid isotopy 6;,;; and g, are constant. Since the total angle
must vary continuously under isotopy, the total angle must also be constant.

71 is an operad morphism because, when we compose tangles T’ and S to form 7" o; S, the total
angle is additive for strings from 7" and S that meet at 0D, to form a single string in 7" o; S. Multiplying
powers of w is of course also additive in the exponent. It is worth noting at this point that we are using
the fact that strings meet discs normally.

(Z5PP V) is in fact a rigid planar *-algebra. Reflection changes orientation and in doing so reverses
the direction in which the string is parameterized, but each of these two changes multiplies the total
angle by —1, so there is no net change to the total angle.

Let z € V;*. Then

P

%\»—t

PPh () = Zeh || o =7 = o (w'/?z),

(<I>5ph)/ (z) = Z°Ph x =7 = ' (w1%2) = (w'x).
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Thus ¢! = (=P ) and so &% = PPh(1) = (@Sph)/ (1) = &P In addition all Radon-Nikodym
derivatives are 1, A = 1 and ¢! is tracial. Tr = ®*P" is positive definite because

1
wi
1
w2 ‘
Tr(z*z) = Z | =Z| |z*z = & (w'/tarzw'/?),

T :

1

wa

where we have used the fact that w” can move along strings without changing Z. Note that Tr(z*x) = 0
iff vw!/* = 0 iff x = 0. Hence (Z°°", V) is a spherical C*-planar algebra.
Finally note that 0°°" = ®P(1) = ®(w'/?) = dp(w'/?) = \d. O

Corollary 2.37. Let (N, M, E) be a finite index subfactor. Then there exists an extremal 11, subfactor

N C M with a lattice of higher relative commutants that is algebraically isomorphic to that of (N, M, E)
(although of course the conditional expectations and Jones projections may differ).

Proof. Let (Z, V') be the rigid planar algebra constructed on the standard invariant of (N, M, F). Then
apply Popa [28] in the form of Jones [16] Theorem 4.3.1 to (Z°P", V) to obtain the extremal I1; subfactor

N C M. U

Remark 2.38. It is well known that, algebraically (i.e. without reference to the conditional expectations),
all standard invariants of finite index subfactors can be realized using II; subfactors. One can tensor
N C M with a III; factor (this leaves the standard invariant the same) to obtain a III; subfactor. Taking
the crossed product with the modular group one obtains a finite index inclusion of 11, factors that splits
as a II; subfactor tensored with a I, factor. Izumi [12] shows that this type II inclusion has the same
principal graph, and hence the same algebraic standard invariant, as the original I1I; inclusion. We thank
Dietmar Bisch for bringing this to our attention.

Remarks 2.39. The idea of the construction of Z*P! is to insert powers of w to cancel the effects of
rotations (implemented by A). One might ask what would happen to a (non-spherical) C*-planar algebra
under this procedure, since A = 1 and we already have full planar isotopy invariance. Certainly we
change the action of tangles, but the only additional isotopy invariance we gain is the ability to move
strings past the point at infinity. Let us examine the effects of isotopy on Z*°! in this case.

Suppose we rotate a box labeled with = by an angle 6. The change in total angle for the upper strings
is the negative of the corresponding change for the lower strings.

—6 0/4 . ) .
Hence there is no change in x because z; AT k/ " = x (since z; is central in V},).

Considering strings alone, rigid planar isotopies to not change the total angle. Only spherical isotopy
moving a string past the point at infinity can change the total angle. For example
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2T =27

The total angle changes by —4, so the difference in Z*P" is the insertion of an additional w' which we
know is the necessary correction to change ¢’ to .

We can reverse the construction of (Z%P, V, w) from (Z, V') as we see below. Note that in (Z°P% V, w)
we have tr(w'/?) = A1/ (w™2w'/?) = A7 and tr(w™/2) = A lp(w!/2w2) = A7L

Theorem 2.40. Let (Z,V) be a spherical C*-planar algebra with modulus 5°°" and let w be a positive,
invertible element of V;" with tr(w'/?) = tr(w™1/2) = A7,

For a planar tangle T' define the v(T') to be the tangle obtained from T as follows: on every string s
insert a (4, 1)-box containing w®®)/4™, Define Z™°4 : P" — Hom(V) by Z™°NT) = Z(v(T)). Let Z"&
be the restriction of Z™°¢ to rigid planar tangles.

Then (2789, V) is a rigid C*-planar algebra with w8 = w and § = \J*Ph.

Proof. Note that the position of the inserted (+, 1)-box on a string does not affect Z because (Z,V) is
spherical. As in the proof of Theorem 2.36 we have: (i) rigid planar isotopy does not change the total
angle along a string; (ii) the total angle is additive under composition; (iii) the total angle in invariant
under reflection. Hence (Z"8'4 V) is a rigid *-planar algebra.

Let Tr = ®%") and tr = »(%"). As in Theorem 2.36 ®"8'(z) = Tr(w~'/2x) which is positive defi-
nite anlji grieid — @Efif)(l) = Try(w122) = §Mr(w=1/2) = \"16°Ph. Similarly 6589 = §5Phtr(w!/2) =
A~Lgsph,

Finally, (#"84)" () = Tr(w'"/?z) = Tr(w™V?(wz)) = @789 (wr) so wsd = w. O

Remarks 2.41. The condition tr(w'/?) = tr(w~'/2) is only used to make sure that ;¢ = §5¢_ Given
any positive invertible w in V;" we can scale w by tr(w~'/2)/tr(w'/?) to obtain w with tr(w'/?) =
tr(w /).

The two constructions (Z, V) +— (Z°*" V. w) and (Z,V,w) + (Z"#4 V) are obviously inverse to
each other.

Subsection 2.5. Planar algebras give subfactors. Consider the two main results of the previous sec-
tion. Starting with a rigid C*-planar algebra (Z",V) we can construct the associated spherical C*-
planar algebra (Z°P" V. w) with distinguished element w and then construct the rigid C*-planar algebra

<(Z sPh)rigid , V). This two part construction simply reproduces (Z”, V). By Popa’s standard lattice re-

sult [28], applied in Jones [16] Theorem 4.3.1, there exists a subfactor with standard invariant (Z°", V).
If we can “lift” the second part of the planar algebra construction to the subfactor level then we will have
a subfactor with (ZNALE) [/ (NME)) o (7m /),
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2

(N7 M; Etr—preserving) — (N, M, ?)
+ +

(Z",V) — (2P Vw) — (2PN v) = (2 V)

Theorem 2.42. Let (Z,V) be a rigid C*-planar algebra. Then there exists a finite index 11; subfactor
(N, M, E) such that (ZWNME) V) = (Z V). In other words, there exists an isomorphism U : V —
VNME) sych that for all T € PT,

(ZMHET)) 0 (Vo) @+ @ Uiok) = Yooy © Z(T).

Proof As noted in the discussion preceding the statement of the theorem, we can assume that we have
an extremal, finite-index II; subfactor N C M giving rise to the associated spherical C*-planar algebra
(2,V) = (ZWMEN) [y (NMEN)) where Ey is the trace-preserving conditional expectation. We also
have a positive, invertible element w € N’ N M = V' satisfying tr(w'/?) = tr(w~/2) = A\~ for some
A > 0. We want to show that the rigid planar algebra (Z", V') constructed using Theorem 2.40 can be

7/(N.M.E) 1/(N,M,E

realized as )> for some new conditional expectation £ : M — N.

Let w; denote the Radon-Nikodym derivatives in (Z”,V'). From Theorem 2.40 w; = w. Recall from
Lemma 2.14 that

UJQZZT

where we have used the fact that the extra w4 and w'/* terms, involved in going from Z" to Z, will
cancel.
In general

wo; = Z w1 = Z

— —
27 2i+1

By Proposition 2.24, for R € N' N Mok

Jok2(R) = Z ‘ =7 * = JpR*Jj,
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where the thick string as usual represents 2k + 2 regular strings. So, with R = w~! or w~! and suppress-

ing mention of Z,

Jporwy ' o1 = T
k 2%
_ .
k+1 2k
I \[T8] || | = e
k+1 2k

Lemma 2.43. Let N C M be ally subfactor with index [M : N] = (5Sph)2 andletw; =w € N'NM
be a positive invertible element with tr (wl/Q) = tr (wfl/z) = AL, for some A\ > 0. Let Ey denote the
trace-preserving conditional expectation from M onto N and define E : M — N by

E(x) = \Ey (w_l/%) :

Then E is a conditional expectation with Ind(E) = 62, where § = A\~'6°Ph,

Take the state ® = tr on N and extend it to M by p o E = Mtr (w‘l/2 : ) For x € M write x
for the standard action on L*(M, tr) by left multiplication. Write 7(x) for the action on L?(M,p) by left
multiplication. Let €, be the projection in B(L*(M, %)) given by E. Let M, denote the result of the basic
construction applied to (N, M, E), i.e. My = Jon(N)'Jo = n(M)e;m(M).

Then there exists a unitary operator U : L?(M, tr) — L*(M, ) such that
(1) m(z) = UzU™.
(3) U*E%l (U - U*U = \Ey < 1/2 ) where wy = Ji2(a 00w JL2(0 )

Proof. Note that for any y € N' N M, Ex(zy) = En(yx) because for alln € N
(y,n) = (z,ny") = (x,y"n) = (yz,n).
Thus E(z) = AEy (w™'%z) = AEy (w™"/*2zw™/*) is positive. E is N-linear on the left and the right,

and E(1) = AEx(w™/?) = Mr(w™"/?) = 1. Hence E is a conditional expectation.
Take tr as the state on N. Then the state @ on M is

?(z) = tr (B(z)) = Mr (Ex(w™22)) = Mr(w™?2).

Define the unitary operator U : L*(M, tr) — L*(M, %) by defining a bijection from M to M by
x +— A~2zw!/* and noting that this map is isometric

’|A_1/2$w1/4||iQ(M,¢) —\lp ( 1/4x*$w1/4) _ tr( 1/2 1/4m*xw1/4)
= tr(z"z) = ||$||L2(M,tr)-
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Observe that U* = U~ : x + A\/22w~1/* and UzU* = () for z € M. Also,
U*eU : x5 N2E (A 2w!/*) o=/
= w B (zw'/*)
= \w VEy (w_l/zxw1/4)
= w Y Ey (w’l/‘lx) ,

so U*e\U = Aw Y4ejw™'/4, Thus, if {b} be a basis for M over N with respect to Ey, then b =
A"12bw'/* is a basis for M over N with respect to E. Now let us compute the index of E. Using
Lemma 1.20

Wd(E) =E () =F" (Y bed ) =S F ' (o @,2))
=3 4P @, @) ~S 0 @, 3)
=30 =ATD bw'A
= ATE ) = A () ()
= A2 (57" = 62,
Now M, = 7(M)e;x(M) so
UM U = n(M)U*eUr(M) = M (Aw™*eqw™/*) M = Me; M = M.
To show (3) note that for a,b € M, Ey(ae;b) = Saband
AEns (w;1/2 (U*aélbU)> — \2B) (w;1/2aw’1/461> w1y
— \2Ey (aw_1/461w2_1/ 2) w1y
— Naw VAE), (elw;”?) w4

where we have used the fact that wy € M’ N M to write Ep (w” - ) = Ey (- w").
Now

NI

Eu (elw;ka) _ 11 7

So

J

- A\ 1
AEy <w2 1/2 (U*aélbU)> = ( ) aw ™ Y44 = —ab.
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O

Lemma 2.43 says that we have an isomorphism of the (short) towers which fixes M and is given by

M c M,
EI\J

=
=N

1 SviaU* - U

N c M C M,
E (Enr)

(Ey)  isobtained from M C M; and wy = Jowy *Jp as in the first part of the Lemma. i.e. (Ey) () =
AEy (wz_ Y 2x>. We thus have the following immediate corollary.

Corollary 2.44. There exists an isomorphism of towers € : {M;}i>_1 — {M;};>_1 such that

1 &gz, M; — M; is a *-algebra isomorphism.

2. & oﬁﬂi o &7 = \Ey, <w;r11/2 : ) where wy = w, w11 = Ji_qw; Ji_1.

Proof. By Lemma 2.43 we have isomorphism up to ¢ = 1 given by & = U* - U. Suppose we have such
an isomorphism &; at level i. Recalling that the basic construction is independent of the state, take the
state ¢ = tro & on M;_1. Then

(Mi—la ¢) C M;
By

1 > via &;

(Mi—h tl") C Mz

(EAQ,l )7

So &; extends to an isomorphism E™* of the basic constructions. Combining this with Lemma 2.43 we
have
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(Mi—la o)) - - M; - M

J > vig £0%

(E]\/Ii—l)i i
M;_4 c M C My
(E]Wi_l ) (E]\/Ii )

Sowe let &1 = Ad(U;,,) o £ and note that &1 restricts to & on M;. £ is just the direct limit of the
(c;i’S. O
Restrict £ to N’ N M to obtain an isomorphism ¥ : VNME) _y yy(NMEN) — ' Let Z be defined
by
= N,M,E -1 -1
Z(1) = 0o (20 PD)) 0 (W5 @ @ UL )

We want to show that Z is just the rigid C*-planar algebra Z”. By the uniqueness part of Theorem 2.20 it
suffices to check that properties (4) through (7) are true. Property (4) is obvious because W is an algebra
isomorphism and the multiplication tangles are unchanged by the constructions of Section 2.4.

Before proving the other properties, consider the Radon-Nikodym derivatives. On N'NM, % = E =
Atr (w_1/2 . ) Meanwhile

— 1 - -t
E,(x) =5 Z bxb = );5—2 Z bw A zw!/Ab*

5sph 2
R

so that 7'(z) = Atr’ (w'/?z) = Atr (w'/?z) and hence wNAME) — .
Similarly, using part 2 of Corollary 2.44 and the construction of a basis in Lemma 2.43, we obtain

Y (w,gN’M’E) ) = wy,. Thus the Radon-Nikodym derivatives for Z are the same as those for Z”. Now

(5) Consider k odd (for k even just use w in place of w in the second diagram).

B
wi
—. sph N\ — N
(2)” A =7 A
wi
k k1 .
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= 5w,1/4\11 (€x) wi/4 = 5)\w,i/4 (w;1/4ekw,;1/4) w,i/zl
= §Phe,

(6) Consider k even (for k& odd use w in place of w in the second diagram).

-] w
(2)™ x =Z
X
[ [ ]
N——; 7.
k ——

=0V (Eﬁk—l <\I/_1 (w,iﬂx))) =0AEy,_, (w,;l/2 (w;ﬂx))
= 5P By, (7)

using Corollary 2.44 part 2.
(7)

g
BN |—

I
N

(2™ v

X

= 0w (B (07" (wo102)) ) = ONE' (w'? (w™"/%0))
= PR (1)
using equation (9) in the third line. Hence Z = Z" and V¥ is an isomorphism of (Z”,V) with

(Z(N,M,E)’ V(N,]VI,E))'
O

SECTION 3. FINITE INDEX II; SUBFACTORS

Here we consider the case of a finite index II; subfactor N C M with the unique trace preserving

conditional expectation . Recall,

Definition 3.1 (Extremal). A finite index II; subfactor N C M is called extremal if the unique traces tr’
and tr on N’ and M respectively coincide on N’ N M (where N’ is calculated on any Hilbert space on

which M acts with finite M -dimension).

Remark 3.2. Note that in particular an irreducible finite index II; subfactor (N’ N M = C) is extremal.
In [24] and [25] Pimsner and Popa show that if N C M is extremal then tr’ = tr on all N’ N M,.
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We will show that the two rotations defined in Huang [11] are the same if and only if the subfactor is
extremal, and illuminate the connection between these two rotations in the general case. Our approach
will yield a new proof of the periodicity of the rotation and provide the correct formulation to generalize
to the infinite index II; case in Chapter 3.

Motivated by the relationship between the two rotations, we produce a two-parameter family of
rotations. We conclude with a collection of results on general finite index II; subfactors including a new
proof of some of Pimsner and Popa’s characterizations of extremality in [24].

Subsection 3.1. Huang’s two rotations for a nonextremal II;, subfactor. In [11] Huang defines
two rotations on the standard invariant of a finite index II; subfactor, shows that each is periodic and
conjectures that the two are equal. One is the rotation pj, defined in 1.41. The other is defined as follows:

Definition 3.3. Define p;, : My — N'N M}, by defining its action on basic tensors © = 11 Rxs®- - - QTy 41
N N N
as

(10) pr(x) = P. <$2®$3®"'®Ik+1®x1>,
N °N N N

where P, is the orthogonal projection onto the N-central vectors in L%(M}, tr), which is just the finite
dimensional subspace N’ N M. P, above could thus be replaced by E s, , the unique trace-preserving
conditional expectation from (M, tr) to (N' N My, tr).

Remark 3.4. In the extremal case Jones [16] shows that p = p and periodicity of p follows from that of
p. As we have already mentioned, in the nonextremal case Huang [11] shows that p and p are periodic.

We begin by formulating another equivalent definition of the rotation p.

Lemma 3.5. Forxz € N' N M,,

(sz(l’))A = ZRb* (Ly)" 7,

beB

where Ly, Ry, : L*(My_q, tr) — L2(My, tr) by Ly =bQy Sand Ry§ =€ @y b.

Proof. From 1.18, (L))" (c®n 1) = (L))" Len = Ex(b*c)n (for n € L2(M;,_1)). Hence

_ By (b20) o) 02 - 02l @ b
pr() ZZ N\ 0T ) Ty (]Xv)x?) (]%’ %xk—&-l%

beB i

= Z Rb* (Lb*)* Z.

beB

Proposition 3.6. Forallx € N' N My, and for ally; € M,

<Pk($)ay1 QY & - ®yk+1> = <567Z/k+1 QY1 & -+ ®yk>
NN N NN N
where the inner product is that on L*( My, tr).
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Proof.

Z (x, Ly (Ry)"y) = Z <x b Dy - ®ykEN(yk+1b)>
b b
< N (Yre1b)*, b* QY@@ k> => <EN(yk+1b)*x,b* XYy Q-+ Q yk>
NN N

N
b

b
:Z< N (Yk+1b) *®yl®"'®yk>:<5ank+1®y1®"'®yk>'
- NN N NN N

O

Corollary 3.7. py, is periodic, (p,)* ™ = id. OnL2(N' N M, tr) pj, = (,0,;1)* (and hence py, is also periodic,
(ow)" " = id).

Corollary 3.8. jy = po = id and fork > 1 andy € N' N0\ My, pr(y) = pr(y)z1 = pr(z7'y) (recall z; is
the Radon-Nikodym derivative of tr” with respect to tr on N' N My, sotr'(z) = tr(z1x) forallx € N'NM,).

Proof. Prop 3.6 implies that (pj(7*))* = p,. ' (z) for + € N’ N M. To see this note that for y = y; @y
© ON Yrt1

(or(2")",y) = <y;’2+1 %y;ﬁ Q- %yilpk(w*)> = <y1‘ %yiﬂ Q- %y;‘,w*>

—1
= <37,?/2 & - %yk-‘rl %yl> = <pk ($)7y> ’
Let y € N’ N M. Then, writing a thick string to represent k£ — 1 regular strings,

(2 Br(y)) = O (Gily), @) = 8 (y, pi (2)) = 3 (y, (pr(x*))")
= 5" tr(pr(2*)y)
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= 6" tr(2* pr(y)21) = 0" e (" pr (21 'y))

Hence i (y) = pr(y)21 = pr(z1'y)- O

Subsection 3.2. A two-parameter family of rotations. In fact we can extend the relationship be-
tween p and p to define a two-parameter family of rotations (periodic automorphisms of the linear space
N’ N M, of period k + 1).

Definition 3.9. For r, s € R define p,(f’s) : N'N My — N' N My, by

(‘T‘,S)<

pp(T) = w2—2,kpk(x)Wi1,1

where (recall) w; ; is the Radon-Nikodym derivative of t1’ with respect to tr on M/ N M.

(r,s

N
Proposition 3.10. (pk > = id.

Proof .
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First note that for £ odd (so an even number of strings),

|
w” | |w"
(r,5)
kaS (I’) = x
wS /I’ES
w S| |\~
T
w—r ’I_FUV‘_T

For k even just switch w” and w" (resp. w™" and w™").

We could describe p,(:’S) by saying that every time we pull a string down on the left-hand side we put
w® or w® (whichever makes sense) on the end of the string away from the central box, or alternatively
w™* or w™* at the end of the string near the box. On the right-hand side we put w" or w" on the end of

the string away from the box, or alternatively w™" or w™" at the end of the string near the box.

k+1
<p§f’s) will pull every string through a full counter-clockwise rotation back to its starting point

and every string will pick up two boxes with powers of w. We obtain the following

w’f‘ ﬁ’f‘ w’f‘ ﬁ”‘
w S o8] TS|
k+1
(p;(f’s) ) T) =
x
[ [ [ [
w o™ T T
[ [ [ [
wS ,{DS wS ﬁ)’s
[ [
=z, ‘TZ, =&
where the last line uses the fact that z;, is central.
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Subsection 3.3. Additional results on finite index II; subfactors.

Lemma 3.11. Eyyqpy, (€1) = 7wy where Eypinyy, is the unique tr-preserving conditional expectation onto
M' N My and wy is the Radon-Nikodym derivative of tr" with respect to tr on M' N M.

Proof. For x € M' N M,

tr(ejx) = tr'(JoerxJy) = tr'(e1 JoxJy)
tr'(e; En(JoxJy)) = tr'(ertr(JoxJp))

tr'(ey)tr' (z) = 7tr(wz)

Proposition 3.12. Let N C M be a finite index 11, subfactor. Then the following are equivalent:

(i) N C M is extremal (tr = tr’ on N' N\ M)

(ii) tr = tr’ on all N’ N M,
(iii) Eppon, (€1) = T where Eypny, is the unique tr-preserving conditional expectation onto M’ M M;.
(iv) px = pi forallk > 0

(v) pr = px, for somek > 1

Proof. The equivalence of (i) and (ii) is proved in Pimsner-Popa [24], but follows easily from our knowl-
edge of Radon-Nikodym derivatives. N C M is extremal iff tr = tr' on N’ N M, iff zg = wy = 1, iff
2 = 1 for all k > 0 (by Lemma 2.14), iff tr = tr’ on all N’ N Mj. Equivalence with (iii) follows from the
preceding corollary.

If N C M isextremalthenz; = land p = p. If pr, = p. = pi(+)z1 then, since py, : N'NM,;, — N'NM;,
is periodic and hence surjective, z; = 1 and hence N C M is extremal. U

Proposition 3.13. Forj > 1 lete; = w{l/Qeiw-*

; Y2 Then {€;} are also Jones projections and Eppqpr, (€1) =
T (tr-preserving conditional expectation).

Proof. We need to check that €7 = ¢;, that ¢,6,4.1¢; = 7¢; and [e;, ;] = 0 for |i — j| > 1. With the tools
we have developed this could be done simply by drawing the appropriate tangles, but can be obtained
with a little more insight as we see below.

Applying the construction of the spherical C*-planar algebra in Section 2.4 we obtain new Jones
projections €; = /\_1w]1~/416] 1/4 = \"lw; 1/4e]w Y4 with 6 changed to 6" = § )\, where \ = tr(w'/?).
For example

[
g
A
\
so E; = wY*Ejw'/* = o YAE,w Y4, which we could also write as £, = wiMElwiM = 1/4E1w_1/4.
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We have produced a spherical C*-planar algebra (Z°°" V, w) with distinguished element w. Take
instead the triple (Z°P", V,w™!) and apply the construction of a rigid C*-planar algebra in Theorem 2.40

to obtain (Z, V) (in fact an ordinary C*-planar algebra). Then, using the fact that tr ((w™")"/?) =
tr (w‘lﬂ) = tr (wl/Q) =\

& = At/ (/\_1w1/461w1/4) w4t — w1/2€1w1/2

and the Jones projections ¢; are those given above. Also note that § = A16%h = § so that 7 = T.
Finally, for all z € M’ N M,

tr(éyz) = tr(elwflmxw;lﬂ) = tr(eyzw; )

= tr'(ey Jox JoJowi o) = tr'(ey Jox Jowp)
= tl",(elEN(JgﬁJowg)) = tr’(eltr(ngJowg))
= tr'(ey)tr'(JoxJo) = Ttr(x).

and hence Eyynpy, (61) = 7. O

Remark 3.14. By changing w to w™! in the triple (Z*"® V, w) and then constructing (Z, V) we have
essentially switched the roles of tr and tr'.

This is more than just an interesting trick. We can do the same thing for any C*-planar algebra.
Because the trace preserving conditional expectation onto V) 5 of €; is a scalar (a property that e; does
not possess) one can show that, even in the nonextremal case, the horizontal limit algebras constructed
from a \-lattice in Popa [28] form a tunnel with index 7! and the proof in [28] is valid in general, with
a small number of modifications.

These sort of ideas appear in a small part of [29] where Popa refines his axiomatization of the standard
invariant of a finite index II; subfactor in terms of A-lattices. See Lemma 1.6 where the element a’ is
nothing other than the Radon-Nikodym derivative w and the conditional expectations constructed are

simply those in (Z, V).

Part 3. Infinite Index Subfactors of Type II

Most the literature on subfactors is concerned with finite index subfactors, particularly II; extremal
subfactors. The study of infinite index subfactors really began with Herman and Ocneanu [10]. The re-
sults that they announced were proved and expanded upon by Enock and Nest [8], where the basic results
for infinite index subfactors are laid down, although the main purpose of their paper is to characterize
the subfactors arising as cross-products by Kac algebras of discrete or compact type.

We begin in Section 4 with some background material on Hilbert-module bases before giving a sum-
mary of results from Enock and Nest [8] on the basic construction.

In Section 5 we exploit the additional structure present for an infinite index inclusion of II; factors to
develop computational tools based on the k-fold relative tensor product of M that sits densely in Mj,_;.

After defining extremality and showing that our definition possesses the usual properties in Sec-
tion 6.1, followed by a brief diversion into /N-central vectors in Section 6.2, we are ready for the main
results. Motivated by the finite index case we define the rotation operators on the /NV-central vectors in
L2( M) in Section 6.3 and in Section 6.4 show that the rotations exist iff the subfactor is approximately
extremal.

Cross products by outer actions of an infinite discrete groups are extremal and provide the simplest
examples. The restriction to the L?-spaces avoids the sort of pathologies that we see in Section 7. How-
ever, as the example of Izumi, Longo and Popa [13] shows, there exist irreducible subfactors which are

2014 Maui and 2015 Qinhuangdao conferences

in honour of Vaughan F. R. Jones’ 60th birthday Page 77



not approximately extremal. Future work involves defining a rotation on a certain subspace of N’ N Mj,
for any infinite index II; subfactor.

SECTION 4. BACKGROUND ON INFINITE INDEX SUBFACTORS

We will make heavy use of the material on operator-valued weights, Hilbert A-modules and relative
tensor products described in Sections 1.1 and 1.2. The reader is advised to reacquaint themself with those
sections before proceeding. In this section we add some additional results about bases before introducing
the basic construction, where we mostly follow Enock and Nest [8]. They consider arbitrary inclusions
of factors equipped with normal faithful semifinite (n.f.s.) weights. We will generally stick to inclusions
P C @ of arbitrary type II factors, with traces Trp and Trg respectively.

Subsection 4.1. Bases.

Definition 4.1. An sH-basis is a set {{;} C D(4H) such that
> R(E)RE)" = 1n.
An H 4-basisis {&;} C D(H 4) such that

Z L(&)L(&)" = 1y

A H 4- (resp. aH-) basis is called orthogonal if L(&;)L(&;)* (resp. R(&)R(&;)*) are pairwise orthogonal
projections. Equivalently: L(;)*L(&;) = 0, jp; (resp. R(&)*R(§;) = 6, ;p;) for some projections p; € A.
If p; = 1 for all ¢ we say that the basis is orthonormal.

Remark 4.2. The existence of an 4#-basis or an H 4-basis is proved by Connes, Prop 3(c) of [6]. Given
a conjugate-linear isometric involution J on H, JA.J is isomorphic to A, so that /{ has a natural right-
Hilbert- A-module structure, which we will denote H 4. In this case, if {§;} is an 4H- (resp. H.4-) basis
then {J¢;} is an H 4- (resp. 4H-) basis.

Lemma 4.3. Let () be a type 11 factor represented on a Hilbert space H. Let & € D(gH) and let {{;} be a
oH-basis. Then

. % de,
(i) Ty (RE)"RE) < Trg (JoR(E) RE)J) = [¢]]*
(ii) 3 (RIR(E)&:, &) = |I]*.

(iii) Forw € (Q'NB(H)),, >_; (x&, &) is independent of the basis used and, up to scaling,

Tré;) = Z< &, &i) -

Proof. Let ¢ = Triynp2(q))-

(i) This is simply Lemma 4 of Connes [6]. In the type II case the proof is particularly simple: Take

projections p; € ny, with p; /* 1. Then Trq = lim; < - p;, p; > and hence
Trg(JoR(€)"R(§)Jo) = lim[|R(E)Bil]* = lim [Ip:c]|* = [1€]]*.
(ii) Let x € (@), Using (i),

(26, &) = ||2'2&])* = ' (R(2'2&)" R(2'%&))
(11) = ¢ (R(&) 2R(&;)) .
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Hence

> (RORE)E &) = Zw )R(€)"R(&))
—Zw JR(&) R(€))
=w< (§)"R(&) = lI<]I>

(iii) Given abasis = = {¢;} define a normal weight ¢= on (Q' N B(H))_, by ¢z = >, (- &, &:)- For bases
Zand Zand z € Q' N B(H), use (11) to obtain

= 2V (R(E)  u R(E)

_ ZZ¢ " R(xi;)) (R(&) 2 R(E)))

_ ZZ W(R(E) e R(E)R(E) w* R(E))) since v/ is tracial
= Zzw (&) s RE)RE) " R(E))

- Zw (&) e R(E;))

— ¢

Hence ¢L is tracial (taklng = =Z)and YL = w’ By (ii) YL # oo and so by uniqueness of the trace
on a type II factor (up to scaling in the I, case), YL = Trg.

O

Definition 4.4. Let () be a type II factor with trace Tr¢. Given H there is a canonical choice of scaling
for the trace on Q' N B(#H) given by

Troosen = Y (- & &)

where {¢;} is any #-basis. [Note that if ()" is a II; factor this may not be the normalized trace on ']

Corollary 4.5. Forallz € (Q' N B(H))S we have

Tro/ (x) = Zm(w&.),

i
where Tt now denotes the extension of the trace on ()’ to (Q)')7.
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Proof. Let x € (Q' N B(H))+. Take z, € (Q' N B(H))+ with z, ~ x (Prop 1.2). Then

Tro(x) = lillcn Treo (xy) by Prop 1.3
= lilgn Z < xR, & > by Lemma 4.3
= Z lillcrn < xié, & > since xj, is increasing
= Z liin xx(we;)
= i x(we,) by definition.

Subsection 4.2. The basic construction.

Definition 4.6. Let P C () be an inclusion of type II factors. The basic construction applied to P C )
is P C @ C Qy, where

Q1= JoP' Jg.
Enock and Nest [8] show in 2.3 that an alternative description of the basis construction is
Q1 ={L()L(n)": &n € DLA(Q)p)}".

Proposition 4.7 (Enock and Nest [8] 10.6, 10.7). Let T : Q4 — ﬁr be the unique trace-preserving
operator-valued weight. Then
* ny Ny, is weakly dense in Q) and also dense in L*(Q).
e Forx € np there is a bounded operator Ar(z) € Hom_p(L?(P),L*(Q)) defined by
Ar(z)a = za foralla € nyy,

(in addition xa € np N nTrQ).
e The adjoint of Ar(x) satisfies

Ar(z)'z = YTI*\Z) forall z € ny Ny,
e forz,y € np,
Ar(z)"Ar(y) = T(z"y).
o Q1= {Ar(z)Ar(y)* : x,y € np}”
e The n.f.s trace-preserving operator valued weight Ty - (Q1), — Q7 satisfies
To(Ar(x)Ar(y)") = zy”

Notation 4.8. Herman and Ocneanu [10] use the notation 2 ® py* for the operator Ar(x)A7(y)* because
Ar(x)Ar(y)* is clearly P-middle-linear and, for z € np N gy,

(z®py")z = 2T (y*2),

so that in the finite index II; case x ®p y* is simply xze;y* which is x ®p y* under the isomorphism

Q1 =Q®pQ.
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The basic construction can be iterated to obtain a tower
Tp Tq Tq,
PCQcCQ C Q-
and many results from finite index carry over to the general case.

Proposition 4.9. o L2(Q1) = L*(Q) ®p LA(Q) via L(§)L(n)* — £ ®p Jgn . Note that for x,y €
ny Ny, this agrees with Herman and Ocneanu’s & p notation.

e Consequently there is a unitary operator 0, : @%1L2(Q) — L2(Qy) such that

00 (51 ® - ® §k+1> = Jo&k+1 ® Jo& ® - - @ Jo&y
P P P P P
Or 0, = mp_1 () ®1id,
P

where x € Q). acts by left multiplication on L*(Qy) and 7,1 (x) is the (defining) representation of
Qi on L?(Qx—1).

e Multi-step basic construction: P C ); C Qo;11 is also a basic construction. In more detail,
represent Q11 on L*(Q;)®pL2(Qi—1) usingu = (6;p0;1)03; : L*(Q2:) — L2(Q:)@pL*(Qi-1),
then

'LLQQiJrlu* = JZP/JZ (% id.

By using Q); in place of P we obtain a representation of Qi (i + 1 < k < 2i+ 1) on L*(Q;). Denote

this representation ¥ or simply m; if k is clear.

e Shifts: By the above multi-step basic construction j; o Ji(- )*J; gives anti-isomorphisms j; :
N/mMQiJ’_l — N’ﬂMgiH,ji : M/ﬂMQH_l — N’ﬁMQi, jz : N/ﬂMQZ‘ — M/ﬁM2i+1. Hence the shift
sh; = jit17: gives isomorphisms sh; : N' 0N Mo 1 — M{ N My 3, shy : N'N Moy — M{ N Moy,
sh; : M'N M2i+1 — Mé N M2i+3, sh; : M'N My, — Mé N M2i+2.

Remark 4.10. Prop 4.9 (i) is Theorem 3.8 of Enock-Nest [8], which is a reformulation of 3.1 of Sauvageot [30].
Their general result includes the spatial derivative, in this case dTrg, /dTrpe, but Trg, (L(€)L(§)*) =
||€]|? by Lemma 4.3 and hence dTrg, /dTrpe = 1.

We remark once again that for a finite index inclusion of II; factors the canonical trace on M; is not
the normalized trace. If one wishes to use normalized traces then Prop 4.9 and many other results here
will need to be modified with appropriate constants.

SectioN 5. THE II; CASE

We now consider the special case of an inclusion N C M of II; factors with [M : N] = co. We
will reserve N C M for inclusions of type II; factors and use tend to use P C () for general type II
inclusions. For N C M additional structure is provided by the existence of some of the Jones projections
and the embedding of M in L?(M). We prove some technical lemmas leading up to existence of the odd
Jones projections. We then give explicit definitions of the isomorphisms 6, from Prop 4.9 and establish
a number of useful properties of these maps.

We conclude this section by constructing a basis for M over N, which will also allow us to construct
bases for M; over Mj,.

Subsection 5.1. Odd Jones projections and conditional expectations.

Lemma 5.1. Let P C Q) be an inclusion of type 11 factors and let P C () C ()1 be the basic construction.
Then:
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(i) Forn € D(L*(Q)p)
Trq, (L(n)L(n)") = Trp (L(n)*L(n)) = |Inl|*.
(ii) Hence, for ¢ also in D(L*(Q)p), L(n)L(&)* is trace-class and

Tro, (L(n)L(§)") =< n. & >.
(iii) Forx € nyp

Trg, (x ® x*) = Trg(xx™).
P

Proof. (i) This is just Lemma 4.3 with P in place of () and a right-module in place of a left-module.
(ii) This is the usual polarization trick and the fact that the product of two Hilbert-Schmidt operators
is trace-class.

(iii) Let {&;} be a L*(Q) p-basis and p; a sequence of projections in P increasing to 1. Then

Trg, (Ar(@)Ar(2)) = ) (Ar(@)Ar(2) &, )iz
=t (L) A () Ar (@) LT ) o
= D" Tep (Ar(e) LE)LE) Ar(2))

= Trp (Ar(x)*Ar(x))
=Trp(T(2"x)) = Tro(zx™).
O

Lemma 5.2. Let P C @ be type 1l factors, P C Q C Q1 C Q2 C --- the tower. Suppose Trp, (Q+) =
{0,00}. Then Trq, ((Q2),) = {0, 00}.

Proof. Take a L*(Q) p-basis {&;}. Then {&; ®p &;} is an L?(Q1) p-basis (Theorem 3.15 of [8]). Let x > 0
be an element of Q) = End_g (L?*(Q1)). Then

Trg,(z) = Y (26 ®p &, & Op &) 120,

i?j

= Z <(sz)* $L§i€j> €j>L2(Q)
2

= Tro, ((Le)" #Lg) € {0,00},

where we have used the fact that (L¢,)" 2 L¢, € End_g (L*(Q)) = Q. so each term in the sum is either 0
or 0. O

Lemma 5.3. Let P C Q be an inclusion of type Il factors with Trg|, = Trp. Let T : Q1 — P be the
trace-preserving operator-valued weight. Let e denote orthogonal projection from L2(Q) onto L?(P). Then
(i) T is iria\ct a conditional expectation, which we will denote E.
(ii) ex = E(x) for v € ny,,.
(iii) exe = E(x)e forx € Q.
(iv) e € P'NQ;.
(v) Forz,y € np, x Qp yx = xey®.
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Proof. (i) Trg(ala*) = Trp(ala®) for all @ € P. Hence Tp(1) = 1 so that Tp is a conditional expecta-
tion.
(ii) Let x € OV Then for all y € np,,.:

(E@),7) = Trp(B(x)y") = Trp(Eley")) = Tro(ay’) = (7.3) = (¢7,5) .

To justify the third equality note that xy* is trace-class and hence a linear combination of posi-
tive trace-class elements. For each of these positive elements a, Trp(E(a)) = Trg(a) and hence
Tp(Bay) = Tigley'). -

(iii) Let a € nry,. Then exed = exF(a) = E(vE(a)) = E(z)E(a) = E(z)ea.

e~

E(azb) = aE(x)b = a(eZ) - b. Hence ¢ € Endp_p(L?(Q)) =

(iv) For x € ngy,, a,b € P, e(axb)
P'NnQs.
(v) For z € np Ny, (2 @py*) 2 = (2T (y*2)) = vey'2.
O
Proposition 5.4. (i) Tr21-|MQi_1 = Tro; 1 so that Ty, | : (Ms;): — (May;_1)7 is in fact a conditional
expectation, which we will denote Eyy,, .
As T1“22-|M2F1 = Try;_1, let €9, 1 denote the orthogonal projection from 1.2(My;) onto the subspace
L?(Msy;_1). Then ey € Mb, N Mo and Eyy,. | is implemented by eo;., 1, Le.
€2i+1T€2%+1 = EMgi,l(flf)emﬂ x € My;.

(i) Troialyy, 7# Troi In fact Trag,,, ((Ma)y) = {0,00}. Hence Ty, @ (Maiy1) — (My;)7 is not a
conditional expectation.
(lll) TMZ«L (€2i+1) =1 and

€241 & €2i41 = €2i41.
Mo;

(iv) Troipq (er€3- - - €9i41) = 1.

Proof. (i) By Lemma 5.3 we simply need to show that Try;| My = Tro;_q for ¢ > 0. try, = try
so the result is true for ¢ = 0. Suppose this is true for some i. Let P = Msy;_1, Q = Mjy; so
that Q; = My and Qo = My, 5. Let {&;} be an L%(Q) p-basis. Take projections ¢, € Q with
> ar = 1and Trg(gr) < oo. Then {g;} is an L?(Q)q-basis and {&; ®p ¢} is an L*(Q;)g-basis
(easily checked since L(&; ®p @) = Le¢,qx). Now, for x € (M),

Troiia() = Z (2& ®p @i, & P Qi)12g,) = Z ((2&) ®p @, & @P Qi)12(0y)

ik

= 2 {@6) (@ @idp - Gihiagy = D ((#6) Br (a1) €

ik

= Z ((2&)EP(1),&i) 1) = Z (&, &2 ()

= TI'QZ'+1(ZL‘).

(i) Note that M; is a I, factor, hence Try;, (1) = oo. For any nonzero projection in M there is a
finite set of similar projections in M with sum dominating 1 and hence infinite trace in M;. Thus
Tray, (p) = oo for all nonzero projections p in M. By spectral theory this implies that Try/, (x) = oo
for all nonzero x in M., . Using the preceding lemma we see that Tryy,,,, ((M;), ) = {0, co}. Hence
for nonzero a € My,

00 = Troi1(a*a) = Try(Thp, (a*a)) = Tro(a* Ty, (1)a)),
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so that T, (1) ¢ C1 and so Ty, is not a conditional expectation and not a multiple of a conditional
expectation.
(iii) Note thatny,, | = ng,, , = My;. By Lemma 5.1 Tro; 11 (xeg;12*) = Tro;(xa™) for allz € My,;. Thus

Tag,(€2i41) = 1.
To show that ey 11 @, €2i41 = €2i41 let 2 = aegi1b where a, b € nry,, (and hence 2 € nyy,,,, N

nr, because 2"z = b*En,_, (a*a)eg;1b). Then

~ ~

(€2z‘+1 & 62i+1) 2= leain1 Tty (€20412)] = [e2iaTany, (Bt (@)e2i410) ]

214
= [€2i+1EM2i_1<a>b] T = €2z’+13-

Since the span of such elements z is dense in L?(My; 1) we have shown eg;11 ®1s,, €211 = €2i41.
(iv) The proof is by induction. Tr(e;) = tr(T'(e;)) = tr(1) = 1 and

U

Subsection 5.2. Properties of the isomorphisms ;. In this section we explicitly define the isomor-
phisms ), : @%L2(M) — L2(My).

Definition 5.5. Given P C (@ an inclusion of type II factors. For r > 1 define J = Jg p, : ®pL%(Q) —
@pL*(Q) by

J<£1®§2®---®§,«> = Job @ ® Joky.

PP P P P

J is a conjugate-linear isometry onto ®5L%*(Q).

Notation 5.6. Let vy, : L?(Qr) ®¢,_, L*(Qr) — L*(Qx+1) denote the isomorphism defined by

5@%1 Jkn = L(ﬁ)L(U)* 5’77 S D<L2(Qk)Qk71)'

Let ¢4 : L*(Qr) ®q, L*(Qx) — L*(Qy) denote the isomorphism defined by

ié@ﬂr—)@ T,y € Ny,
k

Note that both of these maps are Q;-Q;, bimodule maps and both preserve J, i.e.
Jit10k+1 = Vk1JQ1,Qu 1.2
Jrth = hJQp.Qu2

Definition 5.7. Define a (-} bimodule isomorphism

(I Q® HLA(Q) — g@TLZ(QkH)
k

k—1
by

rr1 = (®p, V1) o | idy, ® ®T_lb*>®id)
@bk, +1 ( Qk k+1) ( ka_1 (Qk—1 F Qr—1 g
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i.e.

L*(Qr) Q@i L*(Qy) Q@? Q@i L*(Q) Q@i L*(Qx)
1
L(Qu) & (LQ(Qk) 5 LQ(Qk)> @ (L%Qk) @ L%@@) © 17(Q)

||
(@0 @ @) & (@0 » Q)

k—1 k Qk k—1
1
L*(Qri1) ® -+ @ L2 (Qpy1)
Qk k

Definition 5.8. Define a Q-QQ bimodule isomorphism 6, : @',/ L2(Q) — L%(Q,) by
Or = Vr—120Ur_23 " Yori1.

i.e.

LQ(QT—Z) ® LQ(QT—Q) & LQ(QT—Q)

r—3 Qr-3
1
L2 (Qr—l) @i LQ(QT—I)
1
L*(Qy)

In general define 6" : ®8;LL2(QZ-) — L2(Qiyr) by

93; = Yitr-12 0 Yivr—23" " Virt1.

Note that the maps 1) and hence 6 also preserve .J, because 1V and ¢ do. Hence

Jrer (é-l ® tt ® £r+1) - gr (Jofr+1 ® e ® Jof1) .
P P P P

Also note that 05,1 = 92+1 = 9;1, 0 Yo kt2-

Lemma 5.9. Let P C () be an inclusion of type 11 factors. Let T' = Tg. Leta,b € ny Nny,. Then

*
a (1%) b* e ngl N My, -
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Proof. Note that L(a) = Ar(a), L(b) = Ar(b), so a ®p b* = L(a)L(b)* € mry, by Lemma 5.1 (ii). In
addition a ®p b* = Ar(a)Ar(b)* € My @, by Prop 10.7 of [8]. O

Remark 5.10. Note myNmyy,, C nTﬂn}ﬂanQ. Hence for z € mpNmry,,, & € D(L*(Q)p)ND(,L*(Q))
and Ap(x) = L(2), JoAr(z*)Jp = R(Z).

The next proposition requires a technical assumption on the definition domains for operator valued
weights and traces.

Definition 5.11. Let P C () be an inclusion of type II factors, and let 7" = Tg . We say that 7" and Trq
have compatible definition domains if the following equality holds:

(12) mr N mTrQ (IlT N IlTrQ) (l’lT N l'lTrQ).

This means that any a € mp N mry,, can be written as a finite sum »_ w}z; with w;, z; € np N Ny, for
all s.

Note that the right hand side of (12) is always contained in the left hand side. At this time, we do
not know if the other inclusion always holds. It certainly holds when P is a II; factor, since in this case
mr C M1y, and ny C nry,,, and Equation (12) reduces to the equality mr = ninr.

Proposition 5.12. Let P C () be as in Definition 5.11, and assume that T' and Trq have compatible
deﬁnltlon domains. Let Q = my N mry,. Leta;, b; € Q,i=1,2,.... Let sj € P be defined inductively by
=1, 8541 =T(aj,,85bj11),j > 0. Then

( i)

Gk <a1 (]gD) e (]g)) akﬂ) € (ng,f 1 N mquk>

and hence defines an element of (), which we will denote a1 ®p - - - @p ap41. In the case k = 1 this is
the same element as that represented in the Herman-Ocneanu notation by a; @p as.

(it)

*
a1 ®aA2 Q-+ Q Ay ZCLZH@&Z@---@CLT.
P P P p "p

P

(iii)

(al Q- ak+1> (bl Q- ® bk+1)

P Qr—1 P
_ GZH%""%aiﬂ%aisr—lbr(}%”'%bkﬂ k=2r—1
az+1(%"'(%aj—ﬂ(%a:—i-lsr(%br—&-l(%"'(%bk;-H k= 2r

(iv)

TRk (Cll R ® ak+1>

Qk—1 S S

@ A Q) ® Qg k=2r—1
P P P

ay (}%)

e ® R, T (1) Q- Qagyy k=2r
P P P P
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(v)

(a1®"'®ak+1> <b1®"'®bk+1)
P P P P

a;;_,'_l%“‘%a:+18r(§br+l%"'%bk+l kE=2r—1

(. % T (IXD’ Ay 18rbria % e % br+1 k=2r

a; e ®ar, 1S b, c-® b T k=21
k1 %’ ‘% r+15r @ 0ri1 % % +1)

* . ®a*, 5, @by ) k=9
U1 @+ & Ay Sr0r41 @ - & +1) "

Proof. For simplicity, we assume that there exist w;,z;,y;,2z; € nr N ng, such that a; = w;z; and
b; = y,z; for all 7, as the case where a;, b; are sums of such products follows by (conjugate) linearity in
each a; and b; in the operations (i)-(v) above and in the definition of s;, 7 > 0.

Let Ay = a1 ®pwq, By = by ®pysandfori > 2let A; = x; ®p w1, Bi = 2, ®p y;11. For 7 > 1 let
Zj =Xy Xp ajH,Ej = Zj Xp bj+1. BY Lemma 5.9 Ai7 Buzugz € ngl N mqul.
Let Sp =1, Sj11 = Tgl(A;HSijH),j > 0. We claim that S; = wj,;s;y;11 for j > 1. For j = 1, use
the fact that Ar(aq)*Ar(by) = T'(ajby) from Prop 4.7 to obtain

151 (wz(%%) < 1%3/2) w3 T (a] 1)<§3y2 wzsl(%yQ

Hence S; = Th(A;B1) = wis1ys. In general, if the result holds for j > 1 then

Sj+1=1q (A;-l-lSij-i‘l)

=Tq ((wﬁz ® x§+1> Wi185Yj+1 <Zj+1 ® yj+2)>

=Tq (wj+2T(xj+1wj+1Sjyj+1zj+1) (Ig_j ?/a+2)
_ * * .

= wj+2T(aj+15jbj+1)yg+2

_ *

= Wji28j+1Yj+2-

(i) The result is trivially true for k£ = 0. For £ = 1, ) = 1y 2 = v; and we have, from the definition of
V1,

o0 (9@ = (L@LUE)T = (Ara)Ar(a))
Ar(a;)Ar(al)* is in m_ e, N my, by Lemma 5.9 and is simply a; ®p ay in Herman-Ocneanu
Q 1

notation.
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Assume that (i) is true for some & > 1. Then
em(ﬁ®@®m®@5)
P P P
=0H4(@@@ﬁﬁi@-~®u@ﬁﬁ@1®dﬁi)
P P P P

1 ~ — — —
= 0y 0 Yo 12 (@1 % WaTy % e % Wg41T+1 % ak+2)

=%(0u®waA®(m®wQA®~-
P Q P Q
S Q® <$k & wk—l—l)/\ X ($k+1 ® ak+2)A)
Q P Q P

=0, (E@@@"'@zkﬂ)
Q Q

—_—
c ng:+1 M I'I'lTer_H

by assumption (and the fact that if C' = ) and D = (); then the tower obtained from C' C D
satisfies D; = Q1)
Note that in addition we have shown that

G ®a® @ a2 =A@ A @ @ Ap ® Ay
P P P Q Q Q Q
(ii) Simply observe that
IOk (@@-”®C@> = 0y (JOC@®-”®JOGA1> =0 (a/,’;:l@)---@c?{)
P P P P P P
(iii) For k = 0, ajso ®p by = a] ®@p b;. For k = 1, from the proof of (i),

CL; ® (lTSle ® bg = CL; ® a‘{bl ® bg
P P P P

Assume the result is true for some k > 1. Note that

A:ST—lBT = <w:+1 (% I’i) w;ksr—lyr (Zr (% yr+1)
= w:JrlT(x:w:Srflyrzr) % Yr+1
= w:+15r % Yr+1
A5 =Wy, % Ty Wy i1 Srlrl

_ * *
= Wyyo (% Qi 1SrYr+1-
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Hence, with the first of the two cases always denoting k£ = 2r — 1 and the second k = 2r,

<G1®"'®ak+2) X <b1®"'®bk+2>
P P Qr P P

= (A1®---®Ak®zk+1) ® (Bl®"'®Bk®§k+l)
Q Q Q Qk Q Q Q
A 04 ® - @AS, 1B, ® - Q By @ By
_)M e e a Qe @ @ T
Ak+1®Ak®...®A:+15r®Br+l®'.'®Bk®Bk+1
Q Q Q Q Q Q Q
( g9 Uy i “ Ty Wy g Sy B Yrr12r01 @ br2 Q@ br+2
() % o % Uyys % Ty oWrys ‘% A1 SrYr+12r+1 % brt2 % o % brt2

A5 o Ray, 1 QR 15 Qb @+ @ brga
RH2 5 TRl D p "t P P P
a; ® a; R RQa; 1Srbr+1 ® br+2 Q- ® bk+2
k2 G 1 S S Ay S S S

Hence the result is true for £ + 1 and the general result follows by induction.
(iv) For k =0, Tgf (a1) = T'(ay). Assume the result holds for some £ > 0. Note that

A A =2, T (W12 41) ® Wry2 = 2, T(ar41) ® Wr2
ArTgl(ArH), =, (}%) Wy 41Ty 1 Wyy2 = Ty % (41 Wr 2.
Hence, with the first of the two cases once again denoting k = 2r — 1 and the second k = 2r,
Tg:“ (al Q- ® ak+2)
P P
- TQQ:H <A1 ® - Ay %ZkJrl)

Q Q
Al®...®ATAT+1®---®Ak®Zk+1
Q Q Q Q

~
oR ©

@ AT (A1) @ @ Ap ® A
Q Q Q Q

ay R ® Ay X wrer(aT+l) X Wr42Lp12 X Ary3 Q- k42
P P P P P P

a1 Q- Qa1 QWpZy & Ay 1Wry2Tr42 @ ryg & -+ - Q42
P P P P P

@@+ @1 @ T (A1) @ g2 & @ gy
P P P P P P

a; @+ QA @ Qpy1rp2 @ Ary3 @ -+ @ Ay
P b P P PP

(v) We use the fact that T (z ® y) = 2y combined with (iii) and (iv). Once again, let the first of the
P

two cases denote k = 2r — 1 and the second k& = 2r.
<a1®"-®ak+1> (b1®"'®bk+1>
P P P P

:Tg:+l ((G,l@"'@ak—i-l) X (b1®®bk+l))
P P Qr—1 P P
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Q * * *
TQ:H (i1 % Ty % aySr—1by % T % bk+1>
TS:H Uy % Sl %’ Uy y15y % bri1 %’ e @Ig bk+1)
a;;—f—l % T % CLi+1T(CLi8r,1br) % bri1 (123) T % br+1
CLZ_H (% e (% ai+15rbr+1 % br+2 (% e (% bk+1

A1 %”'%a:+157“ %brﬂ %"'%bkﬂ

ag % e % ay 18:brq1 % bri2 % e % br11

(vi) Let j = 2i — k. We will induct on j. For j = —1 (k =2i+ 1,7 > 0),let u = (6; ®p 0;_1) 65,. From

Prop 4.9
{m?iﬂ (al ®- - ® a2i+2) (bl Q- ® bi+1>A} ® (Cl Q- @ Ci)A
i 2 P P P P P

ZU(G1®--'®(12¢+2> (bl®"'®bi+1®cl®"'®ci)/\
P P P P P P P

P

= (a;i—i-Q @ a:+23i+1)A X (01 Q- ® ci)A.
P P P P P
Suppose (vi) holds for some j(and alli > 7). Let j = 7+ 1,7 > jand k = 2i — j. Set7 = ¢ — 1,
k=21—7=k—1.Let P = @, Q = Q1 and 7 denote the representations constructed from Prop 4.9

applied to P C Q. Then

* * -
=ul as: ®®a S‘+1®Cl®"'®€‘
(21+2P P 1+2°1 P P 7

i

SeE
N
2
®
v
=)
e
t
~__
*
7N
<>
=
®
®
S
+
\_)/

4
¥ @ @A S @B @ ® By | k=2F—1
EkHQ o A S St
X
Q
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Notation 5.13. Let @k = span{a; ®p - Qp agi1 : a; € @} (not to be confused with (Qy) T =

moo, N mry, ).
Qr—1

Corollary 5.14. Let N C M be an inclusion of 11, factors. Then
(i)
1®1®1"'®1:€1€3"'627~_1.
N N N

N J/

2r or2r+1

(ii) Foray,as, ..., as. € M
a1®...®ar®1®ar+1®...®a2r:a1®...®a]2r‘
N N N N N N N N
(iii) M is dense in L2(M,,).
Proof. (1) First notethat 1 = 1,1 ® 1 = 1le;1 = e;. Suppose that
N
1®1®1"'®1:61€3"'627«_1.
N N N

[\ J/

2r

Then, by Prop 5.12 (iii),

11l 1=1101®1---®1 & I1®1l®l---®1
N N N N N N May—2 N N N

N P _ N ~ / S ~~ -
2r+1 2r 2r
= (6163 T 627"—1) ® (6163 " '627«—1)
Moy 2
= (6163 T €2r—3) €1 K €91 (6163 s 627"—3)
My 2

= (6163 s 627“73) €2r—1 (6163 s 621“73)

= €163 €21,

using Prop 5.4 (iii). Also

111l 1=1191®1---®1 & 11®1---®1
N N N N N N Mo, —1 N N N

N J/ N N J/
VvV vV v
2r+2 2r+1 2r+1
= (6163 T 627«—1) €2r+1 (6163 coe 62r—1)

= €1€3 " €2r_1€2p41.

The result now follows by induction.
(2) Let X denote a1 ®y - - - @y a, and let Y denote a, 11 @y - - - @n ag,. Using part (i) and Prop 5.12
(iii) and then (v),

1R R, 1R, Q- Q ag,
N N N N N N

=1X®1®---®1] ® |1®--®1QY
N N N N N

2014 Maui and 2015 Qinhuangdao conferences

in honour of Vaughan F. R. Jones’ 60th birthday Page 91



=|X®1®@---@1||1®---®1 ® 101 [11®---01QY
N N N |l N N Moy s N N |l.N N N
! T 2r 2r e
= X®1I®---®1 I®---®1 1@ ®@1QY
NN N ||~ N [| N N N
T 2r+1 v
=X®1I®---®1 I®---®1 1@ ®@1Y
NN N || N N N N N
T 2r v
=1 XQ®1I®---®1 I1®---®@1Y
NN N || N N N

:CL1®"'®0,2T.
N N

(3) M = M is dense in L2(M). The general result follows from the following claim:

Claim 5.15. Suppose H CND(’HB) is dense in 4Hp and K C D(gK) is dense in gKc. Then
span{{ ®pn: £ € H,n € K} is dense inH ®p K.

Proof. Given & € D(Hp) and y € D(5K) take n,, € K with 17, — 7. Then

legn -l = llegall +lig gl - 2re (e gns o)
= (& pmn) + (&) g s ) — 2Re ((§,€) 5 71, n)

— 0,

so we can approximate { ®p 1) by £ ® 7)o for some 7y € K. Similarly we can approximate & ®p 1o
by & ®p 1o for some &y € H. O

The result now follows by induction because M, C m,_ ., N mry, by iterating Prop 5.12 (iv)
N
and mT]]Vwk Amy, C D(LQ(Mk)N)
O

Subsection 5.3. Bases revisited.

Definition 5.16. Let P C () be an inclusion of type II factors. A () p-basis (also called a basis for () over
P)is {b} C ny Nnqy, such that
dbeb =1
P
b

A pQ-basis is {b} C ny. Nny, such that

zb:b*%bzl.
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Remark 5.17. Note that a (Qp-basis is a special case of a L?(Q)p-basis. We define orthogonal and
orthonormal () p- and p()-bases as in 4.1.

If {b} is a Qp- (resp. pQ-) basis, then {b*} is a pQ- (resp. @ p-) basis.

We will show that for a II; inclusion N C M there exists an orthonormal basis for M over N and
orthogonal bases for all M}, over M;. We will then relate bases for () over P to the commutant operator-
valued weight.

Subsubsection 5.3.1. Existence. We begin with the infinite index version of the so-called pull-down lemma.
Lemma 5.18 (Pull-down lemma). Let z € n). Then ze; = T(zeq)e;.

Proof. Since zey, T'(zey)e; € np,, equality is proved by taking inner products against ae,b, where a,b €
M:
Tri(zejaeb) = Try(ze1 En(a)b) = tr(T(ze1) En(a)b)
= Tri(T(ze1)e1En(a)b) = Tri(T(ze1)eiaerd).
O

Suppose P C () is an inclusion of semi-finite factors acting on a separable Hilbert space H. Suppose

Trp and Tr are normal faithful semi-finite traces on P and () respectively, and let 7 : QT — P*
be the unique trace-preserving normal faithful semi-finite operator valued weight. In [10], Herman and
Ocneanu claim the existence of a set of projections {p; } C my with ) . p; = 1 without proof. We provide
a proof due to Jesse Peterson that there is a sequence of projections {¢;} C my with ¢; /* 1, from which
this claim easily follows.

Lemma 5.19. There is an v € m. with ker(z) = (0).

Proof. (Communicated by Jesse Peterson) Since Trg is semi-finite, let (p;) € mn,, be a sequence of
projections with p; 1. Since Tr(p;) < oo, T'(p;) has a spectral resolution

T(pi):/o Ade,.

Note that € 1 as j oo, and €/p;e; € my for all j > 0.

For 4, j € N, pick a; ; > 0 such that 3, - a; jeiT(p;)e; converges and defines an element of y € P,
and ), i &me;pie; converges and defines an element of € Q™. (This can be done by choosing the «; ;
such that 37, - €T (pi)es|| < oo and 37, ;v jllelpies|l < 32, 5 aij < 00.) Then by normality of T,
we have T'(z) = y, so z € mr.

We claim that ker(z) = (0). Let £ € H \ {0}. Since p; /" 1, there is an i € N such that p;§ # 0.
Fixing this i, we have that p;ej — p; in the strong operator topology as j ,* o0, so p;e;§ — p;§ # 0
as j /* oo. Hence there is a j € N such that p;e¢ # 0, so § ¢ ker(pie}) = ker(eip;e?). It follows that
x€ # 0, and we are finished. O

Proposition 5.20. There is a sequences of projections (q,) € mp such that q, /1.

Proof. Choose x as in the lemma, and define the spectral projections ¢, = 1¢1/5,00)(). Then ¢, < nz €
my, and ¢, " 1 — Projye,) = 1. O

Proposition 5.21. Let N C M be a Il subfactor of infinite index. Then there exists an orthonormal
M -basis.
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Proof. Consider N C M C M, T = T). By Prop 5.20 there exists a sequence of projections p; € mp
with > p; = 1. Observe that > Tri(p;) = Tr1(1) = oo. By adding finite sets of projections and taking
subprojections, operations under which my is closed, we may assume that Tr;(p;) = 1 for all 7. Thus p;
is equivalent in )M to ey, so there exist v; € M; with v;v] = p;, viv; = e1. v] = v]p; € np,s0v; € n},
and by the Pull-down Lemma there exists b; € M with v; = v;e; = b;e;. Then b,e;b} = v;v] = p; so that
>; bierby = 1. In addition
elEN(b;kbj) = elbfbjel = U:Uj = (5i,jel,

so, applying T', En (bjb;) = d; ;1. O
Lemma 5.22. Let B = {b;} be an My-basis. Then B, = {bj;, @y @n ---bj, ., } is an (M, )n basis. If B is
orthonormal then so is B,.

Proof.

(13) L (bjl % e % b]m) =Ly, - Ly, L (bjsr)

so that
bj7-+1> L (bjl % U % bjr+1>

L <bj1 ®---
N
- ZLbn “oe Ly, L (bjr+1) L (bjr+1)* szr o L;;jl =1

If B is orthonormal then L(b;)*L(b;) = Lj Ly, = d;;1, so from equation (13) L(b)*L(b) = d;1 for
b,be B,. O

zZ®

Lemma 5.23. Let {b;} be an orthonormal My-basis. Let k = 2r — 1 or 2r. Define p;, . ;. € My, by
b [mEeghgngogn,  k-wo
J1yeesdr bj1®"'®bjr®1®b;®"'®b;l7 k= 2r.
N NN NN N

.....

j, are orthogonal projections with sum 1.

Proof. For k = 2r — 1 note that by Lemma 5.22 B,_; = {bj, ®x ® - - - b;, } is an orthonormal basis and
hence (b, @y @n -+ b;.) @ (b;, ®n @ -+ - b;, )" are orthogonal projections with sum 1.
N

For k& = 2r simply note that

bjl%"‘%bjr(%l%b;(@'”%b;l:bﬁ%“‘%bﬁ%b;

R Qb
N N

N !

T

by Corollary 5.14. O

Proposition 5.24. Let {b;} be an orthonormal My-basis. Then for —1 < k < [ an orthogonal (M), -
basis is given by:

o biy @+ @b, ®bj;, @+ Rbj, Qb5 Q-+ @b, E=2r—1
piveadr N N N N N N N N
1150l —k bi1®"'®bnf;€®bj1®"'®bjr®1®b;®"'®b;l k = 2r.

N N N N N N N N N

Proof. Note that
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Hence

WRRTHD Jr WARTEES Jr i .. . ) * ... *
z : L (bll ,,,,, l7k> (b’Ll ..... Z'lfk) - z :Ebil ‘Cbil_kpjl 7777 ]rﬁbil_k ‘Cbil

and the terms in the sum are orthogonal projections. O
Corollary 5.25. Let Tt be the canonical trace on M N B(L?(M,)) (definition 4.4). Then TY' (J; (- )" J;) =
Tro_y.

Proof. Let Tr = Tt (J; (- )" J;). Note that by uniqueness of the trace up to scaling, Tr is a multiple
of Tro . Let fi = 1@y -+ ®n 1 (i + 1 terms). Tro_i (for—x) = 1 so we simply need to show that
Tr (for—x) = 1.

Let B be an orthonormal My-basis and Bj, the resulting (M;)y, -basis from Prop 5.24. Bf; is a
a, (Mi)-basis, so by Lemma 4.3 Tt' = D berBy < b l;*> and hence Tr =}, | < > Take 7 such
thatk = 2r—1+t(t = 0or1). Fixiy, ..., 4k, j1,...,Jr Letc = b, Qn- - ®Nb”7k®ijl®N- -®@nbj, €
M;_,_;andletb = b]1 """ ?T . Then, from Prop 5.12,

..... 1
2lk(f2l k)b_1® ®13(]%)b;.r®...®b;fl

N N
_\,_/
l—r+1
where s = EN (1 tee EN (1EN (1[)“) le) tee bjr) = T]]\\f/[lirit (fl,T,tC). Thus
< 2k (for i), b> = (fizrs, ) = (fi—r—t,c5") t=0,

< 2k (for VD, Z> fzfrs,c% 1> = <fzr,63* ® 1> = (fi—r—t,cs") t=1.
Finally

r (for—k) Z <7T2l " (far—i 33> = Z <fl—'r—t»CT]]\\[/[l_T_t (C*fl—r—t>>

bEBy c€B;_,
= (frerts frr—t) = Tripy (frre) = 1.
O
Subsubsection 5.3.2. Commutant Operator-Valued Weight. The main result of this section is:
Theorem 5.26. Let P C () be type two factors represented on a Hilbert space H. Suppose that there exists
a Qp-basis B = {b}. Then the n f s trace-preserving operator-valued weight T¢y : (P')Y — Q'Y satisfies

To(z Z brb* x€P7

Proposition 5.27. Let P C () be type two factors represented on a Hilbert space H. Let B = {b} be a
Qp-basis. Then Op(x) = >, bxb* € (B(H))Z is affiliated with ) and hence in (Q')7. In addition ®p is
independent of B and will hence be denoted simply ®.

Proof. For & € H define an unbounded operator R(¢) : L*(Q) — H with domain nr,, by R(§)a = af.
For n € D(gH) we see thatn € D(R(£)*):
< R(§)a,n >=< af,n >=< € a"n >=< & R(n)a* > =< R(n)"¢,a* >
=<a,JoR(n)"¢ > .
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Hence D(R(§)*) is dense so that R(&) is pre-closed (Theorem 2.7.8 (ii) of [20]).
Let v € P' N B(H) and let A be the closure of 2'/2R(¢). Define m € P'; by

m(w,) = {||(A*A>l/277\|2 n € D((A*A)V/?)

00 otherwise
(note that A* A is a positive, self-adjoint operator on L?(Q) and is affiliated with P’ (a simple computa-

tion)).
Consider the polar decomposition A = v(A*A)/2. Using Corollary 4.5

Trpnsr2Q) Zm
- Z 1(A"A4) 25
= ll4g?
= 2 R(5 P
= Z l2/207¢]
= Z < babiE € >

= (®5(x))(we)-

Since any element of (B(H)), is a sum ) wg,, ®p(z) is thus independent of B. In particular, for u €
UQ), Pp(z) = Pyp(r) = ubp(x)u*, so that () is affiliated with ()’ and hence, by Prop 1.2, P (z) €
(@)% O
Proof of Theorem 5.26.

Observe that since {b*} isa p,L?(Q)-basis, {b*¢; } is a pH-basis: simply note that R(b*;) = R(&;) R(b*)
is bounded and

Zb R(*&)R(VE)’ Z R&)ROIRO) RE)" = Y RERE)" = 1n
Hence, by Lem’ma 4.3 we have, for y € (Q');
Trp: (y'2wy'?) = Z Z (y' Py 276, 0°6)
= Z Z (by' Py 276, &)
= Z Z (y"?bab*y' &, &)

= Trg (y"/*@(2)y"/?)

so that Tiy (z) = ®(x).
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For x € (P')} take x;, € (P') with ), 2, = x. Then
To(x) =Y Tolwr) =Y > bad™ =D > bayb* = > bab”.
K kb bk b

O

Corollary 5.28. For P C Q C Randx € P'N R}, Ty (v) € (Q' N R)Z does not depend on the Hilbert
space on which we represent R.

SECTION 6. EXTREMALITY AND ROTATIONS

Subsection 6.1. Extremality. Note that on N’ N M the traces coming from /N’ and from M are not
equal or even comparable, 7(/N)’ being a type 11, factor for any representation 7 of M, while M is a II;
factor. This phenomenon continues up through the tower on all M, | N M.

In the finite index case irreducibility (N’ N M = C) implies extremality. The example constructed by
Izumi, Longo and Popa in [13] shows that this is not true for infinite index inclusions. They construct
an irreducible II; subfactor of infinite index where the two traces on N’ N M; are not even comparable.

All of this suggests that we should be looking only at N’ N Ms;, 1 when defining extremality for
general IT; inclusions. In this section we give the first definition of extremality in the infinite index case
and show that this definition has as many of the desired properties as we can expect.

Definition 6.1 (Commutant Traces). Let 7 = 0,1. On N’ N My, define a trace Tt , by

Tr,2i+r<$) = Tr2i+1(Ji$*Jl-).
In general, on M} N Ma;y, define a trace Tr;’% 4 by

TY) gir () = Trogj(Jia™ J;).
Remark 6.2. Note that the traces defined above are simply those coming from representing M; on
L*(M;) and using the fact that J;M}J; = Ma;_; by the multi-step basic construction. Note that by
Corollary 5.25 TrY,,, is the canonical trace on N’ N B(L?(M;)).

Finally note that Tt%, | (e1 - - - €;41) = 1. Thisis a consequence of the fact that Tro; 1 (€1 - - - €241) =
land Jiey - - - egip1J; = €1+ - €41

-~

Jiﬂ"?i+1 (€1 egit1) Ji (al R ® ai+1>
N N

= Jym2 <1%%1) (aal%...%@)A
= J; (1%...%1]5]\[ (EN (EN (afﬂ) a:) ...ai)>A
— (19 @ 1By (ata) By @)+ By () )

_ (1®...% 1Ex (a1) -+ Ex (am))A

N
_ . 2i+1 -
=7 (e1- - eiq) (M%"'%Giﬂ)

Hence we could define Tt, ., as the restriction of the unique trace on N’ N B(L*(M;)) scaled so that
Trh; (13- - egir) = 1.
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Definition 6.3 (Extremality). Let N C M be an inclusion of IT; factors. N C M is extremal if Tr} = Tr;
on N'NM,. N C M is approximately extremal if Tr; and Tr; are equivalent on N’ N M; (i.e. there exists
C > 0 such that C~1Tr; < Tr} < CTry on N’ N My).

Remark 6.4. We will abuse notation a little by writing Try;,; = Try;j1 when Trh;,; = Tryj;; on
N’ Majyy and similarly Tr;, ; ~ Try; 1 when Try; , and Try;, are equivalent on N’ N My, .

Proposition 6.5. (i) If N C M is extremal then T}, | = Tro;q foralli > 0.
(i) If N C M is approximately extremal then Tr); | ~ Tro; 1 foralli > 0.
(iii) If Trh, y = Troiy1 for somei > 0 then N C M is extremal.

(iv) If Trh, | ~ Tro;q for somei > 0 then N C M is approximately extremal.

Lemma 6.6. For z € (N' N M;)7, Tﬁ;(z) = Tr)(2)1.

Proof. Assume z € (N'M Mj)_ (in general take 2, 2, 2, € (N' N Mj),). TN;(z) € M;nM;T =

[0, 00]1, so TN/(z) = Al for some A € [0,00]. Let i be an integer such that j = 2i or 2i — 1. Let Tt’

1}??}11;: c:arll'orrll‘i}zzé%S trace on M; N B(L?*(M;)). By Corollary 5.25 Tt' (J; (- )" J;) = Try_; = tr and hence
A =T <Tﬁ;(2)) = Trynsazon) (2) = Tr;-(z).

Lemma 6.7. (l) ngi_l(l’) = Tr2i+1<I62i+1) fO}".T S (Mgi_l):.
(ll) Tl"gz‘(l') = TI'Qi_H (6214_11’621‘4_1) fOY‘ZL’ - (Mgz):
(iii) Trh,_,(z) = Trh,y (zegisr) forz € (NN Myi—1)5.
Proof. (i) Tro;1( - egi41) is tracial on My, and hence a multiple of Try;_;. The multiple is 1 because
Tl"2i71(61 T 621'71) =1= Tl"21'+1(61 te 62i7162i+1)~
(i) ezip12€2i41 = By, (¥)€2i41 50 by (i)
Trois1 (€2i112€2i41) = Troi1 (B, (2)) = Tro (2).

(iii) First note that T' ]\J\ééi’ll (€2i41) = 1: take a basis {b; } for Ms; over My;_1. Then {b;eq;+1b;} is a basis
i+

for Ms;.1 over Ms; 1 and hence

Mé‘—l * * *
TMéiZH (e2i41) = E bj€2i+1bk62i+1bk€2i+lbj = E bj62i+1bj =L

Jik J
Let x € (N’ N Ma;_1)4. Using Lemma 6.6

Tr,2¢+1 (regip1) 1l = TJ\]/V[;+1 (vegiy1)

M3, 4 N’
= TM/ T ék—l (x€27;+1)

241
My, N’

= T T)eo;
M}, ’._1( ) 2i+1

=Ty, (Tr,2i71<x)€2i+1)

= Tv) ()T (egip1)
= 1lg 1 M, \C2it+1
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Proof of Prop 6.5.

In the finite index case the proof is easily accomplished using planar algebra machinery. Tro;;4 is
just closing up a 2i + 2-box on the right, Tr, , is closing up a 2i + 2-box on the left. Extremality means
that a 2-box closed on the left is equal to the same box closed on the right. For a 2i + 2-box just move the
strings from right to left two at a time. This is the approach that we will take here, although of course
we cannot use the planar algebra machinery and must proceed algebraically.

(i) Suppose Try;_y = Trh; ;. We will show that Tro;y; = T, ;. Let z € (N’ N Ma;y1) ., then,
Tro;iq(2)1
= Try; 1 (TMQi_l(Z)) 1
= Trh, 4 (TM2Z.71(2)) 1
- TN;i_l (Thsoi1 (2)) by Lemma 6.6

= Z bThp,, ()b where {b} is a basis for My, ; over N

= Z TM21‘71 (be*)
b

= Thpy,_, (TN:;1 (z)) now represent everything on L*(M,)

= ]'z'TNi ( ( L

= Tr] (]Z ( M}, (z > by Lemma 6.6

)
(15 )
(1

= TI"M' L NB(L2(M;))

I\

))) because j; (]\@F1 N M%H) =M, NN’

O
= Trynsrzan)) (2)1
= Trh; 1 (2)1
(iif) Suppose Try;yy = Trh; 1, ¢ > 1. Using Lemma 6.7, for z € (N' N May;_1)
Trai—1(2) = Trai1(zezi1) = Trh;  (ze2i11) = Try; 4 (2).
(ii) and (iv) Similar to (i) and (iii) with inequalities and constants.

O

Subsection 6.2. N-central vectors. Here we will show that the set of N-central vectors in L?(M},) is
N’ N nyy, (closure in L?(M},)). The proof is essentially an application of ideas from Popa [26].

Definition 6.8. £ € L?(M,) isan N -central vectorif n{ = n foralln € N. The set of N-central vectors
in 1.2(Mjy) is denoted N’ N L2(Mj,).

Lemma 6.9. Let M be a semifinite von Neumann algebras with n.f.s trace Tr. The 2-norm ||x||s =
[Tr(z*x)]'/? is lower semi-continuous with respect to the weak operator topology.

Proof. Suppose {y,} is a net in M converging weakly to y. Take a set of orthogonal projections {p;} C
ny, with > py, = 1. Then for z € ny, with ||z||o < 1 one has | < yaPr, 2 > | < ||yapr||2 and hence

| <y 2> | = lim| <y 2 > | < lminf[|yopi
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so that
|lypell2 = sup{| < ypr, 2> | : 2 € npy, | |22 < 1} < liminf ||yapel|o-
Finally, using Fatou’s lemma for the second inequality,

o113 = D" pelB < S timn it [|gapil3 < i int S flyapel § = lim inf [l
k k k

O

Remark 6.10. The fact that [|y||3 = >, [lypk||5 even if y ¢ nry is established as follows. Let gy =

>4 P and note that gy 1. Hence yqny* 7 yy* and so Tr(qny yqn) = Tr(yany™) / Tr(yy") =
||y||? (even though qny*yqy may notbe increasing). Finally, y*yqy € nr and Tr(qny*yqn) = Tr(y*yqn) =

N « N
> onmy Tr( ypr) = Dy llypell3.
The next lemma follows exactly the line of proof in Popa [26] 2.3.

Proposition 6.11. Let N be a von Neumann subalgebra of a semifinite von Neumann algebra M equipped
with a n.fs. trace Tr. Let U(N') denote the unitary group of N. Let x € nr, and let Ko = {> ., \iv;zv]
Ai €[0,00],3" N\ =1,v; EU(N)}. Then N' Ny, N Ky # (), where K denotes the weak closure of K.

Proof. Let K = K. Observe that for v; € U(N) and \; € [0,00] such that Y )\; = 1, we have
1220 Ao | < 52 Millviavf ]| = 35y Allel| = [|«|. Hence K C B(0, [|=[]) (lyl| = sup{| <
y&,n>1|:&n € (H)1}, soif y, — yand ||y,|| < rfor all « then ||y|| < 7).

Since K is bounded and weakly closed it is weakly compact. Let w = infk ||y||2 (note that w < oo
since © € K). Take y,, € K such that ||y,||s — w. Since K is weakly compact there exists a weakly
convergent subsequence. Hence we may assume that {y, } is weakly convergent. Let y = lim y,,.

Since ||+||2 is lower semi-continuous for the weak operator topology we have w < ||y||2 < liminf ||y,||s =
w and hence ||y||s = w.

Since K is convex y is the unique element of K such that ||y||» = w, for if ||y||2 = ||z||2 = w then
sy +2) € K so

1 1 1 1
W < lly+ 2l = 50+ oRe <y, 2 >< 2w+ lylbllel]s = o7

2

| =

with equality iff y = 2.
Finally, note that for all v € U(N) we have vyv* € K and ||lvyv*||2 = ||y||2 so that vyv* = y. Hence
y € N'N M, and since ||y||s = w < 00, y € nry. O

Corollary 6.12. Let N be a von Neumann subalgebra of a semifinite von Neumann algebra M equipped
with a n.fs. trace Tr and suppose that x € M and ||uzu* — ||y < 6 for allu € U(N). Then there exists
y € N' 0 M with ||z — y||2 < 0.

Proof. Let v; € U(N) and let \; € [0, 1] such that > A\; = 1. Then
1D vy — 2|z = || ) Mi(viav] —2)|l2 < D Niljoswe] —alla <Y Nis =0

So ||z — z||2 < d for all z € K. By the previous lemma there exists y € N’ N M and {y,,} in K, with
yn, — y weakly. Thus  — y,, — = — y weakly and by the lower semi-continuity of || - ||
|z — yl|lz < liminf ||z — y,||2 < 4.
U

Theorem 6.13. Let N be a von Neumann subalgebra of a semifinite von Neumann algebra M equipped
with a n.f.s. trace 'Tr. Then
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(i) NNL*(M) =N Nnr.
(i) (N’ NL2(M))" is the (span of) the commutators in L2(M ). Hence

L*(M) = N' Nng @ [an, N].

Proof (i) Clearly N’ Mnr, C N'NL2(M). Let € € N' N L*(M). Take {x,} in n; with 7, — € in
| - ||2- Then for all u € U(N)

uzmu® = 2y = [[um = zmulls = [[u(zm =€) = (@m = ulls
< lul@m = Oll2 + [[(zm = ullz = 2[[xm — £l

By Corollary 6.12 there are y,,, € N' Nny, with ||, — ym|| < 2|2 — €||2 and thus ||y, —&||2 <
4| — €]|la — 0. Thus € € N'NN,so N'NL2(M) = N' N oy
(ii) Simply note that < &, nim — mn >=< n*{ —&n*,m >,s0 & € N'NLE(M)iff € L [N, N].

O
Corollary 6.14. If N C M is a finite index 11, subfactor then the N -central vectors in 1.?(M,) are precisely
N'"'N M.
Proof. nr, = My, and N’ N Mj, is finite dimensional so N’ N My, = N’ N M. O

Corollary 6.15. Let x € nr, and let Ko = {3, | Avzv} = \; € [0,00],>° A\ = 1,v; € U(N)}. Then
Pnirz2(ay () is in the strong closure of K.

Proof. We will show that the element y € N’ N nyy, N K whose existence is guaranteed by Prop 6.11 is
Pyiarzany (). Since K is convex its weak and strong closures coincide.
Note that for all z € N’ N nqy,

z”: vzl 2) Z/\ (x, zvi>:zn:)\i(m,z>:<x,z>.
i=1 i=1

Take y,, in K such that y, — y weakly. Then for all z1, 20 € N' N ny,
(y, 2123) = (Y22, &1) = lim (ya 22, 51) = lim (ya, 2125) = (2, 2123) -

Since {z125 : z; € N’ Nnp}isdense in N'NL*(M), y = Pniarzu) ().

The density of {2125 : z; € N’ Nnp} in N’ N ny can be seen as follows. By Takesaki [32], Chapter
V, Lemma 2.13, there exists a maximal central projection p of N’ N M such that Tr is semifinite on
p(N'N M) and Tr = co on [(1 — p)(N' N M)];\{0}. Let A = p(N' N M). Then ny,, = N’ N ny, and
L?(A) = N’ N ny,. By Tomita-Takesaki theory applied to (A, Tr) we see that {212} : z; € nyy, } is dense
in L2(A). O

Subsection 6.3. Rotations.

Definition 6.16. 1. Let B be a My-basis. If >, 5 Ry (Ly+)" T converges for all z € N’ N ny,, and
extends to a bounded operator from N’ N L?(M},) to L?(M},) we define p? to be this extension.
2. Let Pc = PN’OLQ(Mk)- If

<$1®$2®“’®$k+1>'—>P(5132®513'3® ®$k+1®x1>
N °N N
extends to a bounded operator on all L?(/;,) we define p;, to be this extension.
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Theorem 6.17. If p? and p,: both exist then p? = p
If py. exists then for any orthonormal basis B, p¥ exzsts If p2 exists for some B then py, exists. In this
case both operators map N' N L?(My) onto N’ N L%(Mj,). Restricted to N' N L?(Mj,) both are periodic (with

period k + 1) and (pP)" = (pe) "

Proof. 1. prkB exists then, as in the finite index case of Section 3, forv € N'Nnp,, andy = 3 <]§\§f> : ‘%ykJrl’

(i (x),y) = Z (2, L (Rp)" y)

b

= Z <a:, VR @ ® ykEN(yk+1b>>
- NN N

= Z <$EN(yk+1b)*, Ve ® yk:>
- NN N

:Z<EN Yr41b) 2, b* ®yl® %yk>

= Z <JC En(yrb)b" @y @ - - ®Z/k>
- NN N

(14) =<x,yk+1®y1®---®yk>.
N N N

Hence p?(z) is independent of the basis used. Note that for u € U(N)

> Ry (Lany) T =Y Ry (Lypus)" @

beB beB

=Y (R (L) 3) -

beB
— u(pe(®)
So if pP exists then pP exists and up? (Z)u* = piB(Z) = pP(Z). Thus pP(Z) € N’ N L2(My).
k41

From (14), ( ) = id.

In addition P, (y2 QN -+ QN Ykr1 ON Y1) = ((pkB)k Pc) 7, so that p, exists. On N’ N L2(M,,),
~ -1 ~ . * ~
DL = ((pkB) ) . Hence (pk)k’url =idand (p?)" = p; "

2. If py, exists then let 0y, = (P.JyprJiP.)". Take an orthonormal basis {b} = {b;}. Then, reversing the
argument in (14), for £ € N’ N L2(M,,),

(15) (1), y) =D (R (L) &)

b
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Let n = 0x(§). Note that 7; o Ry (Lb;)*ﬁ are pairwise orthogonal. For y = y; ®n - - -y @n b the
sum in (15) only has one term, so the equality extends by continuity to all Ry:¢ (¢ € L*(Mj_1)) and
in particular to 7;. Thus (1, ;) = (1;,7;) and so
K 1/2
- (3 )
i=1

K K
Z||Uz||2 = <7%Z77z‘> < |nll
=1 =1
K 1/2
(leml|2> < |lnll-
1=1

Hence >~ | ||| |? is bounded, so 3_% | 7; converges and by (15) converges to 7. Hence p¥ exists.
U

K
Z i
i=1

which yields

Remark 6.18. In Corollary 6.23 we will see that if p2 exists for some basis B then it exists for all bases
and we will then drop the reference to B and use the notation py.

Subsection 6.4. Rotations and extremality. We prove that approximate extremality is necessary and
sufficient for the rotations to exist.

Proposition 6.19. (i) If N C M is approximately extremal then p? exists for all bases B and for all
k > 0. In this case we will use the notation py,.
(ii)) If N C M is extremal then in addition to (i) py, is a unitary operator on N’ N L?(My,). Hence pj, = py.

Lemma 6.20. (l) Ll (Ll)* = €1.
(ii) Jie1J; = egit1.
(iii) Forxz € (M' N My,) ., exxe; = T%/(x)el.

Proof. (i) With the usual notations established in the proof of Prop 5.12,
€1 (Ch ®'-'®Cbi+1>/\ =e (A1 ®"'®Zi)/\
N N M M
(61141) ® e ®ZZ>A
M

M

(16) =
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(ii) From (16), Jie1J; (a1 @y - -+ @n az+1)A = (01 ®n -+ AN a; AN EN(ai—i-l))A- Let v : L*(My 1) —
L%(Msy;) be the inclusion map. From the definition of m2it,

|:ﬂ_i2i+1 (e9i+1) <a1 R ® aHl)A} ® (b1 R ® bi),\
N N N N N

= €2j+1 (G1® -®ai+1®b1®~~-®bi>/\
N N N N

EM2z <a1®---®ai+1®b1®...®bi))/\

( ® aZEN(aZH) ® bl (]%) bl)/\

(iii) For x € (M' N M) ,,
e1re; = Jie2i+1JixJie2i+1Ji = JiEMgi_1 (JZZEJZ) 62i+1<]i = TAJ\;{/(ZL’)GL

Proof of Prop 6.19.
(i) First consider £ = 2/ 4 1. Then, for x € N’ Nnp,,

> (1] | = 5 () () () )

i=r j=r

=S (k) ) - Exttity), (1) )

i=r j=r

- ;<<Lb3>*% (1) ).

because [E ( “0i)]ijer..s € Ms_r11(N) is dominated by 1 = 9, ; (basically because the infinite
matrix [Ey (bfb )

] is a projection). Hence
> R (L)

2 S
<N (L) =P
=S (0F L) a2

S

= Z (L1 (L1)" biw, bi)

i=r

= Z (e1b;x, byx) by Lemma 6.20

=7
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= Z Try (e1b;xx*bley) .

Yoi birxby TN (z2*) and hence Yo eibixx*bie; N E%, (Tﬁ: (a:m*)) e1, by Lemma 6.20.
Thus,

Zs: Try (erbjxzx™bler) / Try (elT]\q (a:x*))

i=1
< CTr, <€1T]\J\4Z(I$*)>
= CTry4q (jl <€1Tﬁ£ (xx*)))
= CTry (jl <Tﬁ£ (a;x*)) eng) by Lemma 6.20
= CTry_4 (jl <Tﬁ£ (:z:x*))) by Lemma 6.7
= CTrarse () <Tﬁ£ (xx*)) by Corollary 5.25
= CTrninsee () (227)
= CTr}(zx*)
< C? Ty (za™)

(17) = C*lf[]5.

Hence 7 Try (e1bza*bje;) — Oand so {d ;| Ry (Lb;«)* 7} is Cauchy and hence converges. In
addition || >7°, Ry: (Lp:)” || < C||Z]], so that p? exists and |[pf|| < C.

For k = 2] we begin as above. For z € N’ N nyy,,

2 S
< Z Try (e1b;xx*bley) .

i=r

> R (L) a
By (17) and Lemma 6.7,

Z Trg (e1b;xx™bley) = Z Try (e1bizeg 17 bier)

i1 i1
2 *
< CTroi41 (egr172 eg41)
= C?Try(za*),

and the remainder of the argument proceeds exactly as in the £ = 2/ + 1 case.
(i) If N C M is extremal then C' = 1 so that ||px|| < 1. As py is periodic this implies that py is a
unitary operator.

O
In order to establish the converse result we connect p; to J - J.
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Proposition 6.21. (i) Ifeither p5, | exists or pb}. exists then o : L?(May,_1) — N' N L*(May,_1) defined
by

Y1 @ - ®y2k'—>P(yk+1®yk+2® ®y2k®y1®y2®~--®yk),
N N N NN N

exists (extends to a bounded operator, also denoted o ).
(ii) In that case let u = (0| nirn2(ay,_y)) - Then p (N' Ny, ) = N'Nngy,, , and

,u(x) = Jk_ll'*Jk_l forx eN'N L

Proof. (i) If pP | exists then by (14) in the proof of Theorem 6.17, o = (p’;k—l o Pc)*. If poy, exists then,

forx € N’ NNy, , andy = ZZ yy) QN - QN yéﬁj

Letting z = ), P, ( ,il@---%yé?%yf)%---%yg))

l|z]]e =sup{| < x,z>|:z € N’ﬂLQ(M%_l), |z]]2 = 1}
< H(Ll szH [[yl]2
< o2l " 1yl
Hence o exists.
(i) We proceed in four steps:

(1) Fory € nyy,, , andfor,n € L?(M;_ ) satisfying either ¢ € D(L*(My_1)n)orn € D(L*(My_1)n),
we have

<?7, £® Jk—177> = W 2y -
N L2(Mak—1)
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This is easily established by first taking both &, 7 € D(L?*(Mj_1)y), and the general result then
follows by continuity. Using Lemma 5.1,

<@\,£(]%) Jk_177>L " : = <y7 L(é)L(T/>*>L2(M2k71)
= Trop—1 (yL(n)L(£)")
= Trop_1 (L(?ﬂ?)L(f)*)

= (yn,€) -
(2) Fory € N' Nnyy,, | satisfying J,_1y*Jx_1 € np,, , we have

wy) = J1y Jp-1.
To prove this first note that for £ € N’ N L?(My,_1) and n,{ € D(L*(My_1)y) or n,{ €

D(yL?(Mj-1)),
<u(€) 77®C> <§ C®n>

The result is true for n = a, ( = b, where a,be Mk—l and the general result follows by density.
Now, using the result from (1),

<Jk—1y*Jk—1,77<]§§C> = (Jo1Y To—1J-1C, M)y

2k—1

- <Jk—1777 y*<>k—1
= (YJe-11, ()4

= <y, (® 77>
N [ k1

= <u(§), n® (¢ > :
N [ ok
Hence Jy_1y*Jy_1 = u(y).

(3) Let p be the maximal central projection in N' N Msy,_; such that Try_; is semifinite on p(N' N
Msg—1). Let A = p(N' N My,_1). We will show thatif v € N'Nnp,, | then { = p(7) is a
bounded vector in A (i.e. in D(L?(A)4)) and hence an element of A.

Leta € N'Nnyy,, , and let y = Jy_1a* J;_12. Note that y satisfies the conditions of (2). Now,
with all supremums taken over Y 7; @y (; such that ||>_n; @ || = 1, we have:

leall = sup <€G,Zm®4¢>’

= sup

&, Jop—1aJop— 177@®Q>’

= sup <§ Jor—1 (ach 1Cz®Jk 177z)>'
<f Jor—1 ( (aJk-1G) ®Jk 1771>>‘

= sup Z <f7 i (]%) JklaJk1C¢>'
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= sup z, Jp—1aJp—1G %’ 771>'

>
=sup|> <Jk1a*Jkla:, G® n>’
>

)
=sup | > <u(y),m ® C>’

= HM(ZJ)HLQ(M%,Q
= [|Je=19" Ti—1]]

= [|a* Je—12 k-1,
< [lal|2[|]-

= sup

Hence £ is a bounded vector and thus an element of A.
(4) Finally, let z € N’ N nyy,, , such that 4(Z) = 2. Then z = Jy_12* J;_1 because

(Je12" T, €) = (@ p1C, Je—1m)

= <33, Je—1n @ C>
N

= <u(f€), C® Jk—177>

= <Z, (® Jk_177>
N

=< z2n,( > .

Proposition 6.22. (i) If p? exists then N C M is approximately extremal.
(ii) If p? exists and is a unitary operator then N C M is extremal.
Proof. (i) Let j be the largest odd number with j < i. By Prop 6.21 there exists  : N’ N L?(M;) —
N’ N L2(M;) with [|u]| < ||pi||" (where j = 2k — 1) and p(z) = Jy_12* Jy_; for v € N' Ny,
We first show that Tr; < ||u|[*Tr;. Take € N’ N M;. If Trj(z*z) = oo then we are done.
Otherwise = € nry; and
Tr}(mgx) = Tr; (Jy—12" Jp—1 Je—1w 1)
= Tr;(u(@)p(z)”)
< lullPll=ll2
= ||l T (2" ).
Finally, TI']' = TI'; (Jk—l : Jk:—l) < HIU,HZTI'] (Jk—l . Jk—l) = H/LH2TI';
(i) If p; is unitary then ||u|| < 1 so that Tr; < Tr}; < Tr; and hence Tr; = Tr).
O

Corollary 6.23. If there exists a basis B such that p? exists then for any basis B, pkE exists and is indepen-
dent of the basis used. Hence we will use py, to denote p?.
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Proof. Suppose p¥ exists. By Prop 6.22 the subfactor is approximately extremal. By Prop 6.19 pkE exists
for any basis B. By Theorem 6.17 py, is independent of the basis used. U

The results of Sections 6.1 through 6.4 can be summarized as follows.

Theorem 6.24. (i) The following are equivalent:
e N C M is approximately extremal;
° TI'IQiJrl ~ Tr2i+1 fOV all i > 0,‘
Trh; 11 ~ Troiy1 for somei > 0;
o py exists for all k > 0;
® py exists for some k > 1;
o . exists for all k > 0;
e . exists for some k > 1.
(ii) The following are equivalent:
o N C M is extremal;
o Tr), | = Troyy foralli > 0;
Trh; 1 = Tro;pq for somei > 0;
pr. (or py) exists for all k > 0 and is unitary
px (or pi) exists for all k > 0 and p = p;
pi (or pi) exists for some k > 1 and is unitary
Pk (or pi) exists for some k > 1 and p = p;

SEcTION 7. A II; SuBFACTOR WITH TYPE III COMPONENT IN A RELATIVE COMMUTANT

Here we construct an infinite index type II; subfactor N C M such that N’ N M; has a type III
central summand.

Subsection 7.1. Outline. Let [, denote the free group on infinitely many generators. We take a suit-
ably chosen type III factor representation w : Fo, — U(H,) on a separable Hilbert space #,. By
tensoring this representation with the trivial representation on [?(N) we may assume that if w, is a
Hilbert-Schmidt perturbation of the identity then w. must be the identity.

The corresponding Bogoliubov automorphisms of the canonical anti-commutation relation algebra
A = CAR(H,y) provide an action of F, on A. This action passes to an action « on the hyperfinite II;
factor R = m(A)” obtained via the GNS representation m on H = L2(A, tr).

We conclude from Blattner’s Theorem, characterizing inner Bogoliubov automorphisms, that for each
v € Fy either o, is outer or a, = id.

Now we construct M = R X, F and N = C x, F, = vN(F4), the von Neumann algebra of
the left regular representation of .. We show that M is a II; factor and that the basic construction for
N C M yields My = B(H) o Foo = B(H) @ vN(Fy), a I, factor.

We show that by virtue of our choice of representation w we have N’ N M; = B(H )F‘X’ and finally
we show that B(H )]F"“‘, while not a factor, has a type I1I central summand.

Subsection 7.2. Preliminary results. We will use the following basic facts about von Neumann alge-
bras:

Lemma 7.1. Let S be a von Neumann algebra with separable predual. Then there exists a countable set
A C U(S) such that \" = S.

Proof. Since S, has separable predual there exists a countable dense subset {¢,} C (S.);. Now the
weak-* topology on (5); (recall S is the dual of S,) is metrizable by d(z,y) = >, .y 27"|Pn(z — ¥)

5
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x,y € (5)1. The o-weak topology on (S); coincides with the weak-x topology we have shown that (.5);,

so that (.5); with the o-weak topology is not only compact, but also metrizable, and hence separable.
Take {x;} o-weakly dense in (.5);. Write each z; as a linear combination of four unitary operators

and let A be the set of all these unitary operators. Then A” = S. U

Lemma 7.2. Let Q be a von Neumann algebra, p € Q) such that pQ)’ is a factor. Let z(p) denote the central
support of p. Then z(p)Q)’ is also a factor.

Proof. Let ¢ = z(p). If q@)’ is not a factor then there exist projections ¢, ¢ € Z(qQ') = qQ' N qQ =
qZ(Q) such that ¢; # 0 and ¢1 + ¢2 = ¢. Let p;, = pg; € pQ’ and note that p; = pg;p € pQp so
pi € pQ NpQp = pQ' N (pQ') = Cp. Hence p; = 0 or p; = p. WLOG p; = p and p, = 0, but then
p < q1 so q is not the central support of p. Hence ¢()’ is a factor. O

Subsubsection 7.2.1. CAR algebra and Bogoliubov automorphisms. Let H be a complex Hilbert space and
let F(H) = @n>0 A" H be the anti-symmetric Fock space of 7. The canonical anticommutation relation
algebra A = CAR(H) is the C*-algebra generated by the creation and annihilation operators a(¢), a*(§)
(¢ € H). A has a unique tracial state tr, namely the quasi-free state of covariance % We have a repre-
sentation 7 of A on L?(A, tr) by left multiplication. It is well known that 7(A)” = R the hyperfinite II;
factor.

Each unitary operator u € U(H) gives rise to an automorphism of the CAR algebra via a(§) — a(uf).
We call this the Bogoliubov automorphism induced by u and denote it Bog(u) : A — A.

By uniqueness of the tracial state on A, any automorphism « of A defines a unitary operator W
on L%(A, tr) by Wz = a(x) for z € A. This unitary operator implements the automorphism « in the
representation 7:

Wr(z)W*j = (a(za~(y))) = (a(z)y) = w(a(x))7. The automorphism « can thus be extended to
an automorphism @ of R = m(A)” by a(x) = WxzW*. For a Bogoliubov automorphism Bog(u) we will
also refer to (Bog(u))  as the Bogoliubov automorphism induced by u and denote it by av,.

A theorem of Blattner [5] characterizes the inner Bogoliubov automorphisms. The theorem is usually
stated in terms of real Hilbert spaces, so we will briefly review the construction of the CAR algebra via
a real Hilbert space and the Clifford algebra over it. For full details see for example de la Harpe and
Plymen [7].

Let F be a real Hilbert space, C(F) the Clifford algebra of the quadratic form ¢(£) =< £|€ >=|[¢||?
and CI(E)¢ = CI(F) ®g C its complexification. CI(E)® has a unique tracial “state” tr. The C*-algebra
generated by the left representation of Cl(E)® on its Hilbert space completion is called the CAR algebra
over E. As before, the von Neumann algebra generated by CI(E)® is the hyperfinite II; factor R and
we have the following theorem:

Theorem 7.3 (Blattner [5]). Let v € O(FE), the orthogonal group of E. Then «, is inner iff either (i)
the eigenspace corresponding to eigenvalue —1 is even dimensional (or infinite) and v is a Hilbert-Schmidt
perturbation of the identity; or (ii) the eigenspace corresponding to eigenvalue 1 is (finite) odd dimensional
and —v is a Hilbert-Schmidt perturbation of the identity.

Given a complex Hilbert space H we may construct CAR(H) as the CAR algebra over £ = Hg
using the Clifford algebra approach — see [19] for details. When considered as an operator on Hg, a
unitary operator u € U(H) is clearly orthogonal. The eigenspaces of u are always even dimensional
(if u& = A¢ then u(i€) = A(i€)) and if u = 1 4 « for some € B(Hg) then x must be C-linear since
both u and 1 are C-linear. If x is a Hilbert-Schmidt operator on Hy then x is also a Hilbert-Schmidt
operator on H (if {{,} is an orthonormal basis for H then {¢,} U {i{} is an orthonormal basis for Hg
and ||z] 13 _ s = Do (||x&all?+1]2(i€0)]1?) = 2||2]|2_j5)- Thus, in the case of Bogoliubov automorphisms
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on the CAR algebra of a complex Hilbert space ‘H constructed via creation and annihilation operators
on anti-symmetric Fock space, Blattner’s Theorem may be stated as:

Theorem 7.4. Let H be a complex Hilbert space andu € U(H ). Then «, is inner iff u is a Hilbert-Schmidt
perturbation of the identity.

Subsection 7.3. The construction. Let [, =< a,, >7°; denote the free group on countably many
generators, with {a,, }>°, a particular choice of generators. Fix a bijection ¢ : {a,}3; — N x F... Let
p: N x Fo, — F be projection onto the second component, p(n,~y) = -, and let ¢ = p o ¢. Since F,
is free,  extends to a homomorphism i : Fo, — F.

Let S be a type III factor acting on a separable Hilbert space H,. By Lemma 7.1 there exists a
countable subset {v, }5°, of U(.S) which is dense in the sense that it generates S as a von Neumann
algebra.

Define a homomorphism ¢ : Fo, — U(H,) by letting ¢)(a,,) = v,. Then define a representation w
of Foo on Hg by w = 1) o ¢. Note that w(F.)” = {v,}" = S.

Let A = CAR(Ho), R = w(A)” where 7 is the GNS representation of A on H = L*(A,tr) =
L?(R,tr). As we saw in section 7.2.1 each w.,, induces a unitary operator W, on H and a Bogoliubov
automorphism of R which we will denote o, (= a,,, = Ad(WW,)). Thus we have a representation IV :
Fo — H and an action o, = Ad(W,,) on B(#) which restricts to an action on R.

Replacing H, and w with Hy ® [?(N) and w ® 1 respectively, we may assume that for each v €
Fo, either w, is the identity or w. is not a Hilbert-Schmidt perturbation of the identity. By Blattner’s
Theorem, (7.4), o, | is either outer or trivial.

Define:

N = Cx,F, =uN(F)
M = Rx,F,
My, = B(H)%qFo ZB(H) @vN(Fy)
We will show that N C M has all the desired properties stated in the introduction.
Lemma 7.5. M is all; factor.

Proof. Let x = ) xyu, € Z(M). Then for all y € R we have
Z YTylUy = YT = TY = Z Loy 0ty (Y) Uy
v v

which yields yz., = z 0, (y) forally € R and all v € F.,. Now, recall that either ., is outer, in which
case 2, = 0 since an outer action on a factor is automatically free, or o, = id in which case z, € Z(R) =
C. Thus every . is a scalar and so z € N. But since v € Z(M)wehavex € NN M C NN N =C.

Thus M is a factor. M is infinite dimensional and has trace tr (Z7 x7u7> = trg (z.), so M is a II;
factor. O

Lemma 7.6. N C M C M, is a basic construction.

Proof. In essence this is true because C C R C B(H) = B(L?(R, tr)) is a basic construction (Jz(C1)'Jg =
B(L?(R))). Let €, be the Jones projection for C C R and note that this is just the extension of try to
L?(R).

Note that L2(M) 22 LA(R) @ [*(F..) via U : (27 xyuy)A — ST ®4, and ULA(N) = C @ 3(F.0),
soe; =¢e; ® 1.
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Let 1 = U - U* be the representation of M on L*(R) ® I*(Fy,) = H ® I*(Fs). 7(x) = z ® id for
xr € Rand 7 (u,) = wy ® A\, where ) is the left regular representation. M is given by

My = (r(M) U {er})" = ((m(R) U {er})" U{m(u,)})

"

and
(m(R)U{e1})" = (R®C)U{e; ®id})"

=(Ru{e})'®C

= B(L*(R)) ® C.
Finally, for z € B(L*(R)) = B(H), n(u))(z ® )m(u,)* = wyaw? ® 1 = a,(z) ® 1. Thus M, =
B(H) xa Fo and every element of M; can be written as » | (7, ® 1) 7(u, ). O
Lemma 7.7. N' N M; = B(H)F~ = W (F.)".
Proof. Suppose x = >z u, € N'N My, z, € B(H). Then for all p € F., we have

Z Tylly = T = upxu;1 = Z O‘p(xv)ump‘l = Z O‘p(xp‘lvp)uv

which yields a,(z,-1,) = z., for all v, p € F.. We can rewrite this as

(18) Tpiyy = p1(T,) Vv, p € Fy
In other words, the matrix entries of x are constant on conjugacy classes modulo a twist by the action
of F..

Now suppose that there exists 7y # e (e the identity element of F.) such that ., # 0, say vy =
atl .. ak! in reduced form. Recall that ¢ : {a,}22, — N x F, is a bijection. Choose infinitely many

mi

distinct positive integers {n;};cy such that n; ¢ {m;,ms} and p(a,,) = P(70). Then the elements
Yi = an, o0, are all distinct and

Wy, = Y(@(an,700,,)) = V(@(10)P(10)P(10) ™) = L(B(10)) = ws,
Hence o, = a.

Now take & € H such that a; *(z,,)¢ # 0. Consider £ ® X, € H ® I?(Fy). Noting that v y0y; are
all distinct, we have:

€ox.) = O nu)E®X,)

= > a()ex,

= 2@ X = D lloy(z,)¢l]
> Z||O‘v;1751%-<%;1w)f”2

= Z\la 1 (@0))E] " (from 18)
= ZHO[’;O x’YO §||2
=
We conclude that © = z, € B(H). Now [z,u,] = 0iff a,(x) = x, so N' N M; = B(H)"> =
W(F.)". O

Lemma 7.8. N' N M; = W(F.,)" has a central summand which is a type I11 factor.
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Proof. Let Q = W (F,,)". There is a canonical embedding « : Hy — H = L2 (CAR(H,)) given by
1(€) = V2a(€) (one has (v2a(€), v2a(n)) = 2tr(a*(£)a(n)) = (£, n) because tr is the quasi-free state

of covariance 1). The action of F, commutes with ¢ so that «(H,) is invariant under W (Fy). If p denotes
the orthogonal projection onto «(#,) then p € W(F,)" = Q.

Let ¢ = z(p), the central support of p in (). Then, using Lemma 7.2, ¢@)’ is also a factor and p €
(qQ") = qQ, so Q' = pgQ)’ = pQ)' = pW (F )" = w,"” = S the type I1I factor we started with. Hence
the central summand ¢@Q = (¢Q’)’ is also a type 111 factor. O

In summary:

Theorem 7.9. There exist infinite index 11, subfactors N C M such that upon performing the basic con-
struction N C M C M, the relative commutant N’ N M has a type I11 central summand.
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