1.5. Cg-semigroups.

If the Banach space B is the dual of a Banach space
B* > the pre-dual of B , then it is of interest to study families

of bounded operators S = {St}t>0 with the semigroup property

S S, =8 which are weak®-continuous in the sense that
s t S+t
1. 2im (Stf, a) = (f, a)
>0+

for all f € B and a € B, ,
2. zim (5,5, &) = (5,%, a)

for all t>0, all a € B+ , and all families £y

such that

2im (fa’ a) = (f, a)
o

Such families are called Cg—semigroups. The simplest example is

translations on ﬁwGR) which has pre-dual LlGR)

Our first aim is to show that if S is a Cg—semigroup

there exists an adjoint semigroup S, on B, such that

(Stf, a) = (f, S*ta} .

The weak®-continuity of S then implies the weak, and hence strong,

ofs
w

continuity of S, , i.e., the CO

semigroup S 1is the adjoint of a
Co—semigroup S, - This explains the name Cg-semigroup. In the
sequel we demonstrate that much of the foregoing theory of

Co—semigroups can be carried over to the Cg—semigroups by duality
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arguments.

We begin by recalling a number of standard

definitions.
A family fu € B is weak®-convergent if there is
an f € B such that

2im (fa’ a] = (f, a)
o

for all a € B, , and a set D ¢ B is weak®-closed if each weak®-
convergent family fu € D has a limit f € D . Alternatively a
set D S_B is weak®-dense if each f € B can be approximated by
fa € D in the weak®-sense, i.e.,

2im [fa’ a) = (£, a)
o

for all a € B* .

Next an operator H on B is weak®-densely defined
if its domain D(H) is weak®-dense in B and it is weak®-weak®-

closed if fa € D(H) and

gim (£,, a) = (£, @)

o

2im (Hfa’ a) = (g, a) ,
o

for all a € B* , imply that f € D(H) and g = Hf . Moreover H
is weak®-weak®-closable if it has a weak®*-weak®*-closed extension or,
equivalently, if fu € D(H) and (fa’ a) +~0 , (Hfu’ a) - (g, a) ,

for all a € B, , imply that g =0 .



The basic duality properties of operators rely upon
two versions of the bipolar theorem. Specifically if A 4s a

weak*-closed sbuspace of B and one defines

A = {a €B,; (f,a)=0 forall feAl},

i
A7 ={feB ; (f,a)=0 forall ac€A}

44
then A=A . Similarly <f A, <s a closed subspace of B,
and
4
A, ={f €B; (f,a)=0 forall a €A},
1L L
A, ={a€B; (f,a)=0 forall f¢ AL
11
then A, = A, . Both these statements are a consequence of the

Hahn-Banach theorem. Consider, for example, the second statement.

: A4
It follows by definition that A, ¢ A, . Next define

p over B, by

p(a) = inf{lla - ¢l ;3 c €A},

then p(a) = 0 for all a € A, but p(a) #0 for a ¢ A, .
Moreover p satisfies the hypotheses of the Hahn-Banach theorem

cited in Section 1.4. Hence for a € A, and b ¢ A, one has
p(a+\b) = #Ap(b*a/A) = [A|p(b)

where the + and - signs correspond to positive and negative A

respectively. Next introduce C as the subspace spanned by A*

59.



60.
and b and define a linear functional f over C by
(£, a+\b) = Ap(b)

for a € A* . One has |(f, c)| = p(c) for c € C and hence,
by the Hahn-Banach theorem, there exists a linear extension F
of f to B, satisfying |F(a)| = p(a) for all a € By . Since
p(a) = |la]l it follows that F € B and since F(a) = 0 for all
J— 3
a € A, one also concludes that F € A, . Finally
al 4
F(b) = (£, b) = p(b) # 0 and hence b 4 A, . Thus A; cCA, .

and the two sets must be identical.

LEMMA 1.5.1. Let B be a Banach space with a predual B, and

H an operator on B .

The following conditions are equivalent:
1. H 1is weak®-densely defined and weak*-weak*-closed,

2. H 4s the adjoint of a norm densely defined, norm

closed, operator H, on B, .

If these conditions are fulfilled and H <& bounded

then || = [[Hl .

Proof. 1 = 2. Consider B X B equipped with the norm

(le12+1gl2)¥ ana B, x B, with the norm

(g, gl

%
lta, DI (“a”2+Hb“2)2 . These two spaces are then in duality

through the relation

((£, g), (a, B)) = (£, a) + (g, b)



Next introduce the graph G(H) of H in B X B as the subspace
G(H) = {(f, HE) ; £ € D(H)} .

i 1
Thus the orthogonal complement G(H) of G(H) in B, x B,

consists of the pairs (a, b) which satisfy
(£, a) + (Hf, b) = 0

for all £ € D(H) . Now define

€
G = {(—b, a) 3 (a, b) € G(H) } .

Then G is the graph of an operator H, on B, . This follows

W

because if (0, a) € G the orthogonality relation gives
(f,a)=0,

for all £ € D(H) , and a = 0 because D(H) is weak®-dense.

4
But G(H) , and G , are norm closed by definition and hence H,

is norm closed. Finally, if H, is not norm densely defined there

must exist a non-zero element of G_L of the form (-f, 0) . Thus
(o, £) € G(H)J“L. But since H is weak®-weak®-closed G(H) is

a weak¥®-closed subspace and G(H)J"L= G(H) , by the first version
of the bipolar theorem cited above. Hence (0, f) € G(H) . This,
however, contradicts the linearity of H and consequently

D(H*) must be norm dense.

2 = 1. The proof is identical but B, replaces B , H,
replaces H , etc., and one uses the second version of the bipolar

theorem.
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Finally the equality of the norms for bounded

operators follows because

lall = sup{|(Hf, a)] ; f€B, ac¢ B*}
= Sup{l(f, H*a)l ; T €B s, a € B*]’ = “H.l".“ B D
If S = {St}tzo is a Cg-semigroup on B then the St

are everywhere defined and weak®*-weak¥*-closed, by the second
continuity hypothesis. Hence Lemma 1.5.1 establishes the

existence of an adjoint semigroup S, = {S*t}t>0 on B, such that

(Stf, a) = (£, S*ta] R
for all f € B and a € B, . Moreover,
Is, Il = s,

But weak®-continuity of S is equivalent to weak, and hence strong,
continuity of S, . Thus S, is a Co-semigroup and in general
satisfies bounds of the form Hs*t“ < M expiwt} . Hence the Cg-
semigroup S satisfies similar bounds. Now by exploiting the
Hille-Yosida theorem for the Co—semigroup S, and the duality

properties of Lemma 1.5.1 one can obtain a Hille-Yosida theorem for
ofs

the C0

semigroup S . But first we must define the generator of

S .

If S is a Cg-semigroup its generator H is defined

as the weak®-derivative of S at the origin. Explicitly D(H)

consists of those f € B for which there is a g € B such that
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the limits

(g, a) = Lim ((I-St)f, a) / t
t>0+
exist for all a € B* and the action of H is then given by
Hf = g . Note that if K 1is the generator of the CO—semigroup

S, on B, , which is adjoint to S , then

«

(Hf, a)

gim  ((1-s )£, a) [ ¢

>0+

2im (£, (1-S,,.)a) / t = (f, Ka)
>0+ "t /

for all £ € D(H) and a € D(K) . This demonstrates that the
adjoint K* , of K , extends H but part of the proof of the

following result is to show that in fact K* = H .

THEOREM 1.5.2. Let B be a Banach space with a predual B,

and H an operator on B . The following conditions are equivalent:

1. H <s the infinitesimal generator of a Cg—semigroup

of contractions,
2. H <s weak*-densely defined, weak*-weak*-closed,
R(I+0H) = B
for all o > 0 (or for one o = oy > 0) , and

[CT+al) £l = |I£]|

for all £ € D(H) and all o >0 (or for all

a € <0, uoj) .



6k,

Proof. 1= 2. The proof of this implication follows the

reasoning used to establish Proposition 1.2.1.

First for o > 0 one can define a bounded operator

Ra(H) on B by
(R,(1E, &) = [{ at S CIENEY

and since S is contractive one has the bound

|lR0L(H)|| =1.

But a weak®-version of the calculation used in the proof of

Proposition 1.2.1 demonstrates that
-1
Ru(H)lz (I+oH) ~ .

Hence

"
=

R(I+aH)

and

[I¢T+aH) £l

A%

£l

for all f € D(H) . But Ra(H)f € D(H) for all f € B and

® -t
2im (R_(H)f, a 2im dt e (S .f, a
o>0+ ( @ ) o0+ jo ( ot ” )

(£, a)

for all a € B* by weak®-continuity of S and the Lebesgue
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dominated convergence theorem. Thus D(H) is weak®*-dense.

Finally suppose fB € D(H) and

(£, a)

it

£im (f R a)
8 B

2im ((I+aH)fB, a) = (g, a)
B

for all a € B* . Then

(£, a) = Lim (Ra(H)(I+aH)fB, a)

B

(RG(H)g, a)

for all a € B* by another application of the Lebesgue dominated
convergence theorem. Thus (I+0H) , and hence H , is weak®-weak®-

closed.

2=1. It follows from Lemma 1.5.1 that H is the adjoint
of a norm densely defined, norm closed, operator H, on B* .

But for o > 0 and a € D(H)

sup{|(£, (T+aHy)a)| ; £ € D(H) , €] =< 1}

lI(T+oH,)al

sup{ | ((T+aH)f, a) 3 £ € D(H) , ||| = 1}
Thus since [[(I+aH)f|| = ||f]] and R(I+aH) = B one concludes that

I(1+an)all = sup{|(g, a)| ; el = 1}
lall
i.e., H, 1is norm-dissipative.

Next suppose there is an f € B such that
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(£, (I+aH,)a) = 0
for all a € D(H,) . But then
(£, Hga) = -(£, a)fa
is continuous in a . Hence f € D(H) and
((I+oH)f, a) = 0

for all a € D(H,) . Since D(H,) is norm demse it follows that
(I+0H)f = 0 and then f = 0 because H is norm-dissipative.

Hence R(I+0H,) = B .

Finally we can apply the Hille-Yosida theorem to

deduce that H, generates a C -semigroup of contractions 8§, on

0
B* . Then the adjoint semigroup S on B is a Cg—semigroup of

contractions. But if K denotes the generator of this latter

semigroup then by Laplace transformation

((z+ox) ™%, a) = (£, (I+uﬁ*)”la)

for all £ € B and a € B, . Thus (140"t = (Tea)™h

i.e., K =H is the generator of S . []

There is also a pre-generator version of the foregoing

theovem. If H is weak®-densely defined and weak®-weak®*-closable

E

then its weak*-closure H generates a CO

semigroup of contractions
if, and only if, H is norm-dissipative and R(I+oH) is weak®-

dense in B for all sufficiently small o > 0 .

Finally we remark that a result analogous to Theorem



1.5.2 can be obtained for a general Cg—semigroup. The norm-
dissipativity which is characteristic of contraction semigroups
is replaced by a family of lower bounds of the type described in

Remark 1.3.3.

Exercises.

1.5.1. Let g@(H) denote the algebra of all bounded operators
on the Hilbert space H and QT?H) the Banach space of trace class

operators, with the norm
1
T €JH) Tl = Te((T*#1)?)

Prove that JL(H) is the dual of U(H) with the duality

(T, B) > Tr(TB)

1.5.2. Let S be a Cg—semigroup on the Banach space B

with generator H . Prove that f € D(H) if, and only if,

Sup H(I—S )fa/é < 4o,
O<t<l t

Hint: The unit ball of B is weakly%-compact by the Alaoglu—

Birkhoff theorem.

1.5.3. Let S be a Cg—semigroup with generator H and
define BO C B as the norm closure of D(H) . Prove that
SBO E-BO and that the restriction of S to BO is a CO—

semigroup.



