1.5. C_0^* -semigroups.

If the Banach space B is the dual of a Banach space B_* , the pre-dual of B, then it is of interest to study families of bounded operators $S = \{S_t\}_{t \ge 0}$ with the semigroup property $S_sS_t = S_{s+t}$ which are weak*-continuous in the sense that

1.
$$\lim_{t \to 0+} (S_t f, a) = (f, a)$$

for all $f \in B$ and $a \in B_*$,

2.
$$\lim_{\alpha} (S_t f_{\alpha}, a) = (S_t f, a)$$

for all t>0 , all $a\in {\mathcal B}_+$, and all families f_{α} such that

$$\lim_{\alpha} (f_{\alpha}, a) = (f, a) .$$

Such families are called C_0^* -semigroups. The simplest example is translations on $L^{\infty}(\mathbb{R})$ which has pre-dual $L^1(\mathbb{R})$.

Our first aim is to show that if S is a C_0^* -semigroup there exists an adjoint semigroup S_{*} on B_{*} such that

$$(S_{t}f, a) = (f, S_{*t}a)$$
.

The weak*-continuity of S then implies the weak, and hence strong, continuity of S_* , i.e., the C_0^* -semigroup S is the adjoint of a C_0^- -semigroup S_* . This explains the name C_0^* -semigroup. In the sequel we demonstrate that much of the foregoing theory of C_0^- -semigroups can be carried over to the C_0^* -semigroups by duality

arguments.

We begin by recalling a number of standard definitions.

A family f $_{\alpha}\in\mathcal{B}$ is weak*-convergent if there is an f $\in\mathcal{B}$ such that

$$\lim_{\alpha} (f_{\alpha}, a) = (f, a)$$

for all $a \in B_*$, and a set $\mathcal{D} \subseteq \mathcal{B}$ is weak*-closed if each weak*convergent family $f_{\alpha} \in \mathcal{D}$ has a limit $f \in D$. Alternatively a set $\mathcal{D} \subseteq \mathcal{B}$ is weak*-dense if each $f \in \mathcal{B}$ can be approximated by $f_{\alpha} \in \mathcal{D}$ in the weak*-sense, i.e.,

$$\lim_{\alpha} (f_{\alpha}, a) = (f, a)$$

for all $a \in B_{*}$.

Next an operator H on $\mathcal B$ is weak*-densely defined if its domain D(H) is weak*-dense in $\mathcal B$ and it is weak*-weak*- closed if $f_\alpha\in D(H)$ and

$$\lim_{\alpha} (f_{\alpha}, a) = (f, a)$$
$$\lim_{\alpha} (Hf_{\alpha}, a) = (g, a)$$

for all $a \in B_*$, imply that $f \in D(H)$ and g = Hf. Moreover H is weak*-weak*-closable if it has a weak*-weak*-closed extension or, equivalently, if $f_{\alpha} \in D(H)$ and $(f_{\alpha}, a) \rightarrow 0$, $(Hf_{\alpha}, a) \rightarrow (g, a)$, for all $a \in B_*$, imply that g = 0. The basic duality properties of operators rely upon two versions of the bipolar theorem. Specifically if A is a weak*-closed sbuspace of B and one defines

$$A^{\perp} = \{ a \in B_{*}; (f, a) = 0 \text{ for all } f \in A \},$$
$$A^{\perp \perp} = \{ f \in B ; (f, a) = 0 \text{ for all } a \in A^{\perp} \}$$

. .

then $A=A^{\perp\perp}.$ Similarly if $A_{\underline{*}}$ is a closed subspace of $B_{\underline{*}}$ and

$$A_{*}^{\perp} = \{ f \in \mathcal{B} ; (f, a) = 0 \text{ for all } a \in A_{*} \} ,$$
$$A_{*}^{\perp \perp} = \{ a \in \mathcal{B} ; (f, a) = 0 \text{ for all } f \in A_{*}^{\perp} \}$$

then $A_* = A_*^{\perp \perp}$. Both these statements are a consequence of the Hahn-Banach theorem. Consider, for example, the second statement.

It follows by definition that $A_* \subseteq A_*^{\perp \perp}$. Next define p over \mathcal{B}_* by

$$p(a) = \inf\{||a - c||; c \in A_{*}\},\$$

then p(a) = 0 for all $a \in A_*$ but $p(a) \neq 0$ for $a \notin A_*$. Moreover p satisfies the hypotheses of the Hahn-Banach theorem cited in Section 1.4. Hence for $a \in A_*$ and $b \notin A_*$ one has

$$p(a+\lambda b) = \pm \lambda p(b \pm a/\lambda) = |\lambda| p(b)$$

where the + and - signs correspond to positive and negative λ respectively. Next introduce C as the subspace spanned by A_{\star}

and b and define a linear functional f over ${\cal C}$ by

(f,
$$a+\lambda b$$
) = $\lambda p(b)$

for $a \in A_*$. One has |(f, c)| = p(c) for $c \in C$ and hence, by the Hahn-Banach theorem, there exists a linear extension F of f to B_* satisfying $|F(a)| \le p(a)$ for all $a \in B_*$. Since $p(a) \le ||a||$ it follows that $F \in B$ and since F(a) = 0 for all $a \in A_*$ one also concludes that $F \in A_*^{\perp}$. Finally $F(b) = (f, b) = p(b) \ne 0$ and hence $b \notin A_*^{\perp \perp}$. Thus $A_*^{\perp \perp} \le A_*$. and the two sets must be identical.

The following conditions are equivalent:

- 1. H is weak*-densely defined and weak*-weak*-closed,
- 2. H is the adjoint of a norm densely defined, norm closed, operator H $_{\!*}$ on B $_{\!*}$.

If these conditions are fulfilled and H is bounded then $\|H\| = \|H_*\|$.

Proof. $1 \Rightarrow 2$. Consider $B \times B$ equipped with the norm $\|(f, g)\| = (\|f\|^2 + \|g\|^2)^{\frac{1}{2}}$ and $B_* \times B_*$ with the norm $\|(a, b)\| = (\|a\|^2 + \|b\|^2)^{\frac{1}{2}}$. These two spaces are then in duality through the relation

$$((f, g), (a, b)) = (f, a) + (g, b)$$
.

60.

Next introduce the graph G(H) of H in $\mathcal{B} \times \mathcal{B}$ as the subspace

$$G(H) = \{(f, Hf); f \in D(H)\}$$
.

Thus the orthogonal complement $G(H)^{\perp}$ of G(H) in $\mathcal{B}_{*} \times \mathcal{B}_{*}$ consists of the pairs (a, b) which satisfy

$$(f, a) + (Hf, b) = 0$$

for all $f \in D(H)$. Now define

$$G = \{(-b, a); (a, b) \in G(H)^{\perp}\}$$
.

Then G is the graph of an operator H_* on B_* . This follows because if (0, a) \in G the orthogonality relation gives

$$(f, a) = 0$$

for all $f \in D(H)$, and a = 0 because D(H) is weak*-dense. But $G(H)^{\perp}$, and G, are norm closed by definition and hence H_* is norm closed. Finally, if H_* is not norm densely defined there must exist a non-zero element of G^{\perp} of the form (-f, 0). Thus $(0, f) \in G(H)^{\perp \perp}$. But since H is weak*-weak*-closed G(H) is a weak*-closed subspace and $G(H)^{\perp \perp} = G(H)$, by the first version of the bipolar theorem cited above. Hence $(0, f) \in G(H)$. This, however, contradicts the linearity of H and consequently $D(H_*)$ must be norm dense.

 $2 \Rightarrow 1$. The proof is identical but B_* replaces B, H_* replaces H, etc., and one uses the second version of the bipolar theorem.

Finally the equality of the norms for bounded operators follows because

$$\|H\| = \sup\{ |(Hf, a)| ; f \in B , a \in B_{*} \}$$

= sup{ |(f, H_{*}a)| ; f \in B , a \in B_{*} } = ||H_{*}|| .

If $S = \{S_t\}_{t \ge 0}$ is a C_0^* -semigroup on \mathcal{B} then the S_t are everywhere defined and weak*-weak*-closed, by the second continuity hypothesis. Hence Lemma 1.5.1 establishes the existence of an adjoint semigroup $S_* = \{S_{*t}\}_{t \ge 0}$ on \mathcal{B}_* such that

$$(S_{+}f, a) = (f, S_{*+}a)$$
,

for all $f \in \mathcal{B}$ and $a \in \mathcal{B}_{*}$. Moreover,

 $\|S_{+}\| = \|S_{*+}\|$.

But weak*-continuity of S is equivalent to weak, and hence strong, continuity of S_* . Thus S_* is a C_0 -semigroup and in general satisfies bounds of the form $||S_{*t}|| \leq M \exp\{\omega t\}$. Hence the C_0^* -semigroup S satisfies similar bounds. Now by exploiting the Hille-Yosida theorem for the C_0 -semigroup S_* and the duality properties of Lemma 1.5.1 one can obtain a Hille-Yosida theorem for the C_0^* -semigroup S. But first we must define the generator of S.

If S is a C_0^* -semigroup its generator H is defined as the weak*-derivative of S at the origin. Explicitly D(H) consists of those $f \in \mathcal{B}$ for which there is a $g \in \mathcal{B}$ such that

62.

the limits

$$(g, a) = \lim_{t \to 0+} ((I-S_t)f, a) / t$$

exist for all $a \in B_{*}$ and the action of H is then given by Hf = g . Note that if K is the generator of the C₀-semigroup S_{*} on B_{*} , which is adjoint to S, then

$$(Hf, a) = \lim_{t \to 0+} \left(\left(I - S_t \right) f, a \right) / t$$
$$= \lim_{t \to 0+} \left(f, \left(I - S_{*t} \right) a \right) / t = (f, Ka)$$

for all $f \in D(H)$ and $a \in D(K)$. This demonstrates that the adjoint K*, of K, extends H but part of the proof of the following result is to show that in fact K* = H.

THEOREM 1.5.2. Let B be a Banach space with a predual B_* and H an operator on B. The following conditions are equivalent:

1. H is the infinitesimal generator of a C_0^* -semigroup of contractions,

2. H is weak*-densely defined, weak*-weak*-closed,

$$R(I+\alpha H) = B$$

for all $\alpha > 0$ (or for one α = $\alpha_0 > 0) , and$

 $\|(I+\alpha H)f\| \geq \|f\|$

for all $f \in D(H)$ and all $\alpha > 0$ (or for all $\alpha \in (0, \alpha_0]$).

Proof. $1 \Rightarrow 2$. The proof of this implication follows the reasoning used to establish Proposition 1.2.1.

First for $\alpha > 0$ one can define a bounded operator $R_{\alpha}(H)$ on \mathcal{B} by

$$(R_{\alpha}(H)f, a) = \int_{0}^{\infty} dt e^{-t} (S_{\alpha t}f, a)$$

and since S is contractive one has the bound

$$\|\mathbf{R}_{\alpha}(\mathbf{H})\| \leq 1$$

But a weak*-version of the calculation used in the proof of Proposition 1.2.1 demonstrates that

$$R_{\alpha}(H) = (I+\alpha H)^{-1}$$

Hence

$$R(I+\alpha H) = B$$

and

$$\|(I+\alpha H)f\| \geq \|f\|$$

for all $f \in D(H)$. But $R_{\alpha}(H)f \in D(H)$ for all $f \in \mathcal{B}$ and

$$\lim_{\alpha \to 0+} \begin{pmatrix} R_{\alpha}(H)f, a \end{pmatrix} = \lim_{\alpha \to 0+} \int_{0}^{\infty} dt e^{-t} \left(S_{\alpha t}f, a \right)$$
$$= (f, a)$$

for all a $\in \mathcal{B}_{*}$ by weak*-continuity of S and the Lebesgue

dominated convergence theorem. Thus D(H) is weak*-dense. Finally suppose $f_\beta \in D(H)$ and

$$\lim_{\beta} (f_{\beta}, a) = (f, a)$$
$$\lim_{\beta} ((I+\alpha H)f_{\beta}, a) = (g, a)$$

for all a $\in \mathcal{B}_{*}$. Then

$$(f, a) = \lim_{\beta} \left(\mathbb{R}_{\alpha}(H)(I + \alpha H) f_{\beta}, a \right)$$
$$= \left(\mathbb{R}_{\alpha}(H) g, a \right)$$

for all a \in \mathcal{B}_{\star} by another application of the Lebesgue dominated convergence theorem. Thus (I+\alphaH) , and hence H , is weak*-weak*-closed.

 $2 \Rightarrow 1.$ It follows from Lemma 1.5.1 that H is the adjoint of a norm densely defined, norm closed, operator H_* on B_* . But for $\alpha > 0$ and $a \in D(H)$

$$\begin{split} \|(I+\alpha H_{*})a\| &= \sup\{|(f, (I+\alpha H_{*})a)| ; f \in D(H) , \|f\| \leq 1\} \\ &= \sup\{|((I+\alpha H)f, a) ; f \in D(H) , \|f\| \leq 1\} . \end{split}$$

Thus since $\|(I+\alpha H)f\| \ge \|f\|$ and $R(I+\alpha H) = B$ one concludes that

$$\|(I+\alpha H_{*})a\| \ge \sup\{|(g, a)|; \|g\| \le 1\}$$

1

i.e., H is norm-dissipative.

Next suppose there is an f $\in \ensuremath{\mathcal{B}}$ such that

$$(f, (I+\alpha H_{*})a) = 0$$

for all $a \in D(H_{*})$. But then

$$(f, H_a) = -(f, a)/\alpha$$

is continuous in a . Hence f \in D(H) and

$$((I+\alpha H)f, a) = 0$$

for all $a \in D(H_{\frac{n}{2}})$. Since $D(H_{\frac{n}{2}})$ is norm dense it follows that (I+ α H)f = 0 and then f = 0 because H is norm-dissipative. Hence $R(I+\alpha H_{\frac{n}{2}}) = B$.

Finally we can apply the Hille-Yosida theorem to deduce that H_* generates a C_0 -semigroup of contractions S_* on B_* . Then the adjoint semigroup S on B is a C_0^* -semigroup of contractions. But if K denotes the generator of this latter semigroup then by Laplace transformation

 $((I+\alpha K)^{-1}f, a) = (f, (I+\alpha H_{*})^{-1}a)$

for all $f \in B$ and $a \in B_{*}$. Thus $(I+\alpha K)^{-1} = (I+\alpha H)^{-1}$, i.e., K = H is the generator of S.

There is also a pre-generator version of the foregoing theorem. If H is weak*-densely defined and weak*-weak*-closable then its weak*-closure \overline{H} generates a C_0^* -semigroup of contractions if, and only if, H is norm-dissipative and R(I+ α H) is weak*dense in \mathcal{B} for all sufficiently small $\alpha > 0$.

Finally we remark that a result analogous to Theorem

1.5.2 can be obtained for a general C_0^* -semigroup. The normdissipativity which is characteristic of contraction semigroups is replaced by a family of lower bounds of the type described in Remark 1.3.3.

Exercises.

1.5.1. Let $\mathcal{L}(H)$ denote the algebra of all bounded operators on the Hilbert space H and $\mathcal{T}(H)$ the Banach space of trace class operators, with the norm

$$\mathbb{T} \in \mathbf{J}(\mathcal{H}) \longmapsto \|\mathbb{T}\|_{+\infty} = \operatorname{Tr}\left(\left(\mathbb{T}^*\mathbb{T}\right)^{\frac{1}{2}}\right)$$

Prove that $\mathcal{J}(H)$ is the dual of $\mathfrak{T}(H)$ with the duality

$$(T, B) \mapsto Tr(TB)$$
.

1.5.2. Let S be a C_0^* -semigroup on the Banach space B with generator H . Prove that $f \in D(H)$ if, and only if,

$$\sup_{0 < t < 1} \| (I-S_t)f \| / t < +\infty .$$

Hint: The unit ball of \mathcal{B} is weakly*-compact by the Alaoglu-Birkhoff theorem.

1.5.3. Let S be a C_0^* -semigroup with generator H and define $B_0 \subseteq B$ as the norm closure of D(H). Prove that $SB_0 \subseteq B_0$ and that the restriction of S to B_0 is a C_0 -semigroup.