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SOME PROBLEMS OF SPECTRAL THEORY

Werner Ricker

As noted by several authors (eg. [7], [8])., the spectrality of
operators with spectrum contained in R or the unit circle ™= {zeC; |z| =1},
can often be determined by an examination of the groups {eiST; s € R} and
{Tn; n € &}, respectively. The problem is to determine when the Stone
Theorem holds for these groups, that is, to determine wheﬁ they are the
Fourier-Stieltjes transform of a spectral meésure defined on the dual group.
For our purposes, it suffices to consider Stone's Theorem for the pair of
(dual) groups Z and T (see [8], [1l1l] for example).

Let X be a locally convex Hausdorff space, always assumed to be quasi-
complete. The space of continuous linear operators on X with the strong
operator topology is denoted by L(X). The spectrum of an operator T € L(X)
is taken in the sense of [1ll; p.270]. The o-algebra of Borel sets of T is
denoted by B. Let P denote the space of trigonometric polynomials in C (Ir)

If v € (), then @ denotes its Fourier transform.

STONE'S THEOREM. Let the space X be barrelled and T € L(X) have

an inverse in L(X). Suppose that one of the following conditions is
satisfied.

(i) For each x € X, the subset
AT(X) = {p(T)x; pe P, "_p“Oo < 1},

of X, is relatively weakly compact.

(ii) The group {7"; n ez} is an equicontinuous part of L(X) and

_1k—l m n
B (x) = {k ) L V(-m)Tx; k= 1,2,..., ¥ e C(m), Iyl < 1}
m=0 n=-m
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is a relatively weakly compact subset of X, for each x € X.

Then there éxists a regular spectral measure E : B — L(X) =such that

(L) ™ = JzndE(z), n e 7&.

iy

In particular, T 1is a scalar-type spectral operator with o(T) & T.

Conversely, if T 1s a scalar-type spectral operator with 0(T)§.ﬂ3
then (i) and (ii) are satisfied and (1) holds.

Criterion (i) is a vector version of the well known Bochner-Schoenberg
test characterizing those complex sequences on Z which are the Fourier-
Stieltjes transform of a regular Borel measure on T, [2]. Similarly,
criterion (ii), stated in terms of Fejér means, is also a vector general-
isation of an analogous statement characterising those complex sequences on
7 which are a Fourier-Stieltjes transform, [12].

Given an operator T € L(X) with o(T) € T, it may happen, of course,

that the group
(2) n Tn, n € 7%,

is not the Fourier-Stieltjes transform of any L(X)-valued spectral measure.
That is, T is not a scalar-type spectral operator in the sense of N. Dunford,
[1]. Nevertheless, there may exist a space Y containing X such that when
interpreted as a part of Y, each of the sets AT(X), x € X (ox BT(X), x € X)
is relatively weakly compact and T has a natural extension to an operator

TY e L(Y). By applying Stone's Theorem to the group n T?, ne %, it is

often possible to deduce that the extended operator T, is a scalar-type

Y
spectral operator. Accordingly, TY admits a rich functional calculus.
More precisely, a locally convex space Y is said to be admissible for

a densely defined operator T in X, with domain D(T), [11], if there is a

continuous linear injection 1 : X — Y and an operator TY € L(Y), such that
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1(X) is dense in Y, the space Y is the completion or quasi-completion of

1(X) and
Ty(lx) = 1(Tx), x € D(T).

If T € L(X), then a locally convex space Y is said to be admissible
for the group (2) if it is an admissible space for each operator Tn, n e 7,
or equivalently, if it is admissible for T and T_l, and if {T? ; n e Z} is
an equicontinuous part of L(Y); this need not follow from the equicontinuity
of (2).

If Y is an admissible space for an operator T € L(X), then O(Ty) can
be vastly different from o(T), [1ll; 82]. Even if o(T) = O(Ty), particular
points of o(T) may be of a different type when considered as points of

O(TY). For example, if X = ll(Iﬂ and T € L(X) is given by
Tx = (xz,x1+X3,X2+xq,X3+x5,...), x € X,

then o(T) = [-2,2]. The points *2 belong tc the continuous spectrum of T
and the remaining points are in the residual spectrum, [4; pp.29-36]1. Let
Y = lz(lﬂ. Then Y is an admissible space for T. If TY is the natural
extension of T to Y, then c(Ty) = ¢g(T). However, now all the points of
c(TY) belong to the continuous spectrum of TY [5; pp.231-232].

The following two examples illustrate how the suitable choice of an
admissible space Y for the group generated by a "non-spectral operator"
T € L(X) with o(T) & T, that is, the group (2), can often be used to show
that T is a spectral operator when considered to be acting in Y rather than

X.

EXAMPLE 1. Let T denote the bilateral unit shift in the space

X = IP(ZD, 1< p< 2, that is, Tx = y, x € X, where Y, = X, 1 for each
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n € Z. Then the group (2) does not satisfy the criteria of Stone's Theorem,
[3, Theorem 5.7]1." Let g > O satisfy p_]-+q_l = 1. Define a continuous
linear operator F : X — Lq(E) by FE = £, § € X, where F= £. If the range

W, of F, is equipped with the norm

Iel = el + 02N £fewW,
g X

3

then W is a Banach space and F is an isomorphism. Let S € L(W) be the
operator FTF—l, that is, Sf = g, £ € W, where g(z) = zf(z), z ¢e ™. Then T
is of scalar-type if and only if S is of scalar-type.

By an arc in T is meant a subset of the form {eit; t € J}, where J is
an interval in R. Let A denote the collection of all arcs in T and M the

ring generated by A. The map 0 : M — L(W) given by
o(1)f = fo, few,

for each T € M, is additive, multiplicative and uniformly bounded on A.
However, Q is not uniformly bounded on M, [11; Example 2.8]. Let

E : M — L(x) be given by
-1
E(t) = F "Q(1)F, T e M.

Then the group (2), which "ought to be" the Fourier-Stieltjes transform of
E, fails to be so because E cannot be extended to a o-additive, L(X)-valued
measure on B. In fact, the subsets AT(X), x € X, of X, are in general un-
bounded.

However, the space Y = lz(Z) is admissible for the group (2).
Furthermore, if TY denotes the natural extension of T to ¥, then the Stone
Theorem applied in v implies that {T;; n e Z} is a Fourier-Stieltjes
transform. In fact, if Ey(T) denotes the natural extension of the operator

E(T) to Y, for each T € M, and EY denotes the extension of the so defined
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measure from M to B, then

_ n
(3) T; = Jz dEY(z), n € Z.

ik

In particular, TY is a scalar-type spectral operator.

Unfortunately, it is not always possible to choose the space Y to be

a Banach space.

EXAMPLE 2. Let X lw(zn and T € L(X) be the operator given by

in
e Xn for each n € Z. Then the sets AT(X), x € X,

Tx = y, x € X, where yn
although bounded in X, are not necessarily relatively weakly compact.
Accordingly, the group (2) is not a Fourier-Stieltjes transform.

For each T € B, let E(t) € L(X) be the operator given by E(T)x = y,

x € X, where y, = XT(ein)xn for each n € Z. The group (2), which "ought
to be" the Fourier-Stieltjes transform of E, again fails to be so because E
is not o-additive. In this case however, all the projections needed for the
“spectral measure" are available, as distinct from Example 1, but the top-
ology of X is too strong for E to be o-additive.

However, the Fréchet space Y = CZZ (pointwise convergence topology) is
admissible for the group (2). Furthermore, if TY denotes the natural ex-
tension of T to Y, then {T;; n € Z} satisfies Stone's Theorem. In fact, if
EY(T) denotes the natural extension of E(t) to Y, for each T € B, then (3)
holds. 1In particular, TY is a scalar-type spectral operator.

Given an operxator T e L(X), there is no general procedure for finding
an admissible space Y for the group (2) in which the extended group
iT ; n e Z} is a Fourier-Stieltjes transform. Some methods, applicable to

=

a large class of examples, are discussed in [11; §4]. The aim is to find an



150

admissible space Y for the group (2), such that the set of operators
{P(TY)i pe P, “p"W <1}

or the set of operators
_lk-l m
] L VemTy k=12, v e cm, Il < 1),
m=0 n=-m
is an equicontinuous part of L(Y) and such that each set AT(x), x € X,
(respectively, BT(X), X € X) is relatively weakly compact in Y. It then

follows (cf. proof of [6; Theorem 2]) that each set AT (y), y € v,

(respectively, BTy(y), y € Y) is relatively weakly com;act.

The approach suggested by the above discussion can, of course, be
adopted for operatérs which do not necessarily have their spectrum in 1T or
R. Many operators T have naturally associated with them a large family of
commuting projections which are in a certain sense dense in the prospective
resolution of the identity for T. It is often possible to find an admissible
space for T in which the associated family of projections can be extended to
a spectral measure (see [10], [11] for example).A In this way many important
operators of analysis which "ought to be" spectral operators, as pointed out
by N. Dunford in the survey [1], are in fact so when considered to be acting

in a suitable admissible space for the given operator. We conclude with

such an example.

EXAMPLE 3. Let Yy be a complex number and p be a ¢-valued function
(2]
satisfying gestlp(t)[dt < «, for some € > 0. Consider the operator T given
by
2
- pw), tz2o0,

dt

together with the boundary condition
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(4) £'(0) - y£(0) = 0.

The domain of T consists of those functions £ € X = L2([0,*)), having
derivatives f' absolutely continuous in bounded intervals of [0,®)
satisfying (4), such that Tf e X.

The spectrum of T consists of the continuous spectrum [0,®) and of a
finite number of eigenvalues Ak = ui, 1 <k £r, with Im(uk) > 0, which are
zeros of some function ® holomorphic in the half-plane Im(z) > -%e, [9]. It
can happen that ® also has real zeros. They too can only be finite in

number. If these real zeros are denoted by o ,0., then the positive

IR

numbers Xj = oj, 1l < 3j £ 1, are called the spectral singularities of T. The
"eigenfunctions" corresponding to the spectral singularities are not elem-
ents of the space X.

Assume that p and y are such, that r = 0 (eg. p = 0, Yy = -i). Denote
by M the 8-ring of all Borel sets in o(7) which have positive distance from
A= {il,...,il}. Then there exists a multiplicative, o-additive map
E : M — L(X) which commutes with T. However, if {Tn}:=l is a sequence of
sets from M whose distance from A tends to zero as n — «, then the sequence
of norms {“E(Tn)"; n=1,2,...} is unbounded, [9]. Accordingly, E cannot
be extended to an L(X)-valued measure on the Borel sets, B(C), of C.

Let Y denote the projective limit of the system {(E(T)X,E(7)); T ¢ M}.
Then there is an L(Y)~-valued spectral measure EY’ on B(C), such that Ey(T)
is the unique extension of E(t) for each T ¢ M. The operator T has an ex-
tension to a scalar-type spectral operator TY' in ¥, with spectral resol-

ution of the identity EY' [9; Theorem 5.7].
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