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CORNER SINGULARITIES AND BOUNDARY INTEGRAL EQUATIONS 

W. McLean 

INTRODUCTION 

It is well known that if u is the solution to an elliptic 

boundary value problem (BVP) posed on a region n , then, in 

general, U will not be smooth at any corner point of n. Because 

of this, special care is needed when designing numerical methods for 

solving the BVP , especially if high accuracy is needed near the 

corners, see e.g. [8]. As might be expected, similar difficulties 

arise when the BVP is reformulated as a boundary integral equation 

(BIE) , that is, the solution to the BIE fails, in general, to be 

smooth at the corner points of the boundary. 

In this paper we discuss the double layer potential equation 

for a polygon, a BIE which occurs as a reformulation of the Dirichlet 

problem for Laplace's equation. With this simple example, we illustrate 

some of the difficulties created by the presence of corners, and how 

one might deal with them. A more detailed technical discussion of this 

and similar problems can be found in papers such as [2], [3], [4] and [5]. 

1. THE INTEGRAL EQUATION 

Let n be a polygonal domain. That is, n is a bounded, connected, 

open subset of JR2 whose boundary r = an is made up of a finite 

number of straight line segments. Let be the vertices 

of n , numbered so that xj+l follows x. 
J 

as one proceeds anticlockwise 

around r. We adopt the convention that subscripts are evaluated modulo N 
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wherever necessary, so, for example, We also rule out the 

possibili·ty that Q has "cracks'", that is, we require Q to be a 

Lipschitz domain (cf" (2.5) below). 

The classical Dirichlet problem for the Laplace operator 

is to find, for a given g E c0 (f) , a function u E c0 (~')) n c2 <m 

satisfying 

(l.la) 0 on 

(l.lb) u g on 

The traditional way to reformulate this BVP as a BIE is as follows" 

Let n(y) denote the uni·t inner normal at y E r, y>'x . , 
J 

let 0 

denote ·the usual surface measure on r (i.e. do is the "element of 

arc length") , and let 

E(x) 
l 

2TI 
1 

log TXT 

be the logarithmic potential. The double layer poten·tial with density 

function u on r is defined by 

Wu(x) J u(y) 'd:(y) E(x-y) do(y) . 

r 
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Because E is a fundamental solution to Laplace's equation in two 

dimensions, i.e. 

-6E on 

where, as usual, 8 denotes the Dirac measure or unit mass at the 

origin, one can easily show Wu E C00 (&1) and 

(1.2) 6wu 0 on Q 

assuming only that u E L 1 (f) • If one also assumes u is continuous 

at X E r , then 

(1. 3) 

where 

lim Wu (z) 
z +x,zE Q 

r 

1 (I+T) u (x) , 
2 

x E r 

Tu(x) 
J 

k(x,y)u(y) 
e (x) 

do (y) + - 11-- u (x) 

r 

k(x,y) 2 
d 

E(x-y) 
1 (x-y) on (y) 

Cln(y) 'IT lx-yl2 

l 
0 for x E: r , X ;t X. 

J 
8(x) 

e. for x =x. 
J J 

and (:J. 
J 

is the angle sho¥m in figure 1. Notice 1T -8. 
J 

in·terior angle at X .• 
J 

is the 
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If u E c0 (f) satisfies the second kind Fredholm integral equation 

(1.4) (I+T)u 2g on r 

then we see from (1.2) and (1.3) that 

U(x) 

J Wu(x) 

1 g(x) 

for X En 

for X E r 

is a solution to (2.1), and the usual maximum principle argument shows 

that this is the only solution. Thus, the problem of solving the BVP 

·(1.1) reduces to that of solving the BIE (1.4), and it is known, see 

eg. [6], that the integral equation (1.4) is well posed on c0 (f), 

that is 

is an isomorphism. Note that throughout the paper the term "isomorphism" 

will mean "isomorphism of normed spaces", in other words an isomorphism 

is a bounded, linear, onto mapping which has a bounded inverse. 

2. AN EQUIVALENT SYSTEM OF INTEGRAL EQUATIONS 

In this section we construct a system of integral equations on the 

unit interval which is equivalent to the BIE (1.4). 

Denote the part of f lying strictly between xj-l 

rj, i.e. 

r j { (1-t)xj-1 + txj 0 < t < 1} 

and x. 
J 

by 



and choose a sufficiently small d.> 0 
J 
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such that 

Let X. 1 J--. 
3 

be the points lying on r. 
J 

d . 1 + d . < length of r .. 
J- J J 

and r j+l respectively 

which are at distance d. from X. 1 and define parametrizations 
J J 

Put 

then 

y~(t) 
J 

l<t> 
J 

y~ (t) 
J 

r~ 
J 

r. 
J 

(1-t)x. 1 + tx. 2 
J- J-3 

(1-t)x. + tx. 1 
J J-3 

0 < t < 1} m 1(1)3 1 

r~ u flx. 2}u r~ u {x. 1} u r~ 
J . J- 3 J J- 3 J 

j 1(1)N I 

as illustrated in Figure 1. Notice r~ 
J 

is oriented "backwards" so 

-
Figure 1. 



y~ (0) 
J 

X. 
J 
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1 
y j+l (0) 

To each function u on r , associate the vector of functions 

u 

defined on the unit interval by 

(2 .1) u~(t) 
J 

u[y~(t)] 
J 

O:£t:£ l. 

Introduce the 3NX3N operator T by pu·tting 

T u Tu (x) , 
t 

x = y i (s) 

then 

T l(l)N 

where 

1 
tm m 

f 
tm 

(s,1:) u~(t) dt ' T .. u.(s) k .. 
~J J ~] J 

0 

tm 
k(x,y) 

dy~ 
(s) ' kij(s,t) -] , X=: 

dt 

1(1)3 

0 < s s 1, 

y /~(t). 
J 

Corresponding to our original integral equation (1.4), vle have a 

3NX3N system of integral equations 

(2.2) (~ + !)~ = 
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on the unit interval, the correspondence between the solutions u 

and u being given by (2.1) • 

If x,y E r. 
J 

then (x-y)•n(y) 0 so k (x,y) 

TR.m 
ij 

0 j 1(1}N R.,m 1(1)3 . 

With this in mind it is clear that unless 

(2 .3) j 

or 

(2 .4) j 

i.e. unless r~ 
~ 

i-1 and R. = 1 and m 3 

i+1 and R. = 3 and m 1 , 

and r~ meet at a corner, the kernel 
J 

[0,1]X[0,1]. On the other hand, one finds that 

T13 
j+1,j 

31 
Tj,j+1 R6. 

J 

where 

0 and 

is 

J I: r 0 (,,t)v(t)dt for 0 < s ::> 1 

R6v(s) l i v(O) for s = 0 

with the singular kernel 

r 6 (s,t) = 1 s. sine 
'IT 

s 2+t2+2st cos 6 

00 

c on 
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Note that our assumptions on the domain Q imply 

(2. 5) o < I e .1 < 'IT 
J 

j l(l)N 

and that, mving to a scale invariance proper~cy does not appear in 

Write 

and gathe;c togetheJ; the 
2m 

T .. 
l.J 

satisfying (2.3) or (2.4), i.e. 

those with singular kernels, to form the 3NX3N Then 

ga·ther toge·ther the remaining 
2m 

Rij , i.e. those wi·th smooth kernels, 

·to form. a 3NX3N opera·tor K. Thus '"1e have the decomposition 

T ~ + l'-.c 

The general form of ~ can be seen by looking at the case N 3: 

r 

(Each block of the matrix is 3X3 and only the nonzero entries are shown.) 

If r were a smoot.h, closed curve (i.e. no corners), then the 

kernel k of T would be smoo·th and T would be a regularising 

opera·tor so ·the principal part of I + T would be jus·t t.he iden·ti·ty 

opera·tor I o However, in our case 



(2 .6) 

where 

A = I + R -8 - -8 
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is nmv the principal part, with K regular ising. 

3o THE BASIC SCAU~R INTEGRAL EQUATIONS 

We begin by diagonalising ~ 

illustrated by taking N = 3 . If 

Q 

then 

(3o 1) 

1 

Q-1A Q 
-6 

-1 

Once again, the general case is 

so we turn ·to consider ·the scalar integral equa·tions 

(3 0 2) (I±R6)v f on [0,1] 0 
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Let 1:£p::>oo and aE:R. For functions 

where is the usual norm on Lp(0 1 1} 1 and for functions 

put 

where ll•llp is the usual norm on Lp (0 ,00} Denote the corresponding 

Banach spaces by respectively, then 

if l;;>p<oo 

if p=oo 

defines a linear isometry 

Notice that 'L~ Lp • A simple calculation reveals that 

(3. 3} R J R J -1 
8,1/p = P 8 P 

is the Wiener-Hopf operator defined by 

R8 w(x} = Joo 4 8 (x-y}w(y}dy 
,)l 0 ,]l 

O<x<oo 

X E :R . 

Using the results in [7] 1 many of the essential properties on R 8,)1 

deduced from a knowledge of the Fourier transform of its kernel: 

can be 

sinh[8 (~+ij.J}] 
1 

_ 1 < Jl < 1 . 
sinh[TI(~+i)l}] 
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For our purposes, it suffices to know that the norm of R 
8,).1 

as an 

operator on L~(O,oo) satisfies 

that is, 

( sin [ 1 e 1 ().l+a> 1 if 0< l).l+al < 1 

~ sin [rr ().l+a)] 
(3 o4) IIRe)lp,a ;; 

l e 
if 0 

1T 
).l+a = 

Since J is an isometry, 
p 

we see from (3 . 3) that the norm of Re 

operator on 

(3 0 5) 

Lp (0, 1) 
a 

and therefore: 

satisfies 

THEOREM: If -1 
Ia+ 1/pl < (1+ IBI!rrl , then 

and so 

;; sin [I e 1 <a+ 1/pl 1 < 1 
sin [rr (a+ 1/p) l 

is an isomorphism with 

Proof: 

II <r±R8J - 1 11 ;; <1- IIR8 11 J -l p,a p,a 

This is just a matter of checking 

sin[ I e I).JJ 
sin[n).ll 

then using (3.4) and (3.5), and writing (I±R8 )-1 

< 1 ' 

I 
n=O 

(+R )n 
8 

as an 
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By developing a sui-table regulari-ty t.heory for the corresponding 

Wiener-Hopf equation, one can show tha-t if f in (3'"2) is smooth on 

[0,1], then the solution v satisfies 

(3 .6) a.s s + 0 

for mE {1,2,3, ... } and 

cL [3]. 

If we define ·the produc'c space 

3J 
rY IT LP(O,l) 

then it is clear from (3. 1) and the theorem above (wi·th a= 0) tha-t 

I I -1 is an isomorphism for 1/p <min (1+ 8j 1/1T) - • Since K 

compact (1;£p;£oo) , it is ea.sy ·i:o show from (2.6) t.ha·t 

I+T 

is an isomorphism for 

max 
j 

By considering I + T as an opera-tor on a sui·table product of weigh·ted 

Sobolev spaces, one can shovJ that t.he solution of (2.2) also satisfies 

( 3 • 6) near ·the corner 

and r 
j+l 

X. 
J 

(wiU! 8=8 .) ' 
J 

provided g is smooth on 

In sec·tion 1, when discussing ·the Dirichlet problem, we assumed t.he 

dat:a g ·to be continuous" If, for example, g is only assumed 1:o be in 
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then (1.3) holds only 0-almost everywhere and the limit must be 

·taken nontangen·tially. A solution to the Dirichlet problem, in this 

generalized sense, is still furnished by (1.5). (Some recent results in 

this direc·tion for Lipschitz domains may be found in [ 9] • ) In practice, 

one is mostly interes'ced in the case of piecewise smoo·th data. By 

considering ·the obvious corresponding system of integral equations, one 

easily sees ·that jumps in g cause no real problems, i·t is only the presence 

of corners in the region iJ that gives rise to singularities in the 

derivatives of 'che density u . 

4. REf'rlARKS ON NU~1ERICAL I"'ETHODS 

'I'he decomposi·tion (2.6) of I+ T in·to a principal part !!:e and a 

compact per-turbation K is especially useful for the analysis of numerical 

methods of solving (2.2). Indeed, the usual collective compactness 

arguinents, see e.g. [1], effectively reduce the problem to that of solving 

the simplified system of equations 

and of course the diagonalization (3 .1) reduces this to ·the problem of 

solving the scalar equations 

(4.1) f on [0' 1] 

If (4.1) is considered as an operator equation on a Banach space X , 

then a projec'cion method for obtaining an approximate solu'cion consis·ts 

in choosing a (fini·te dimensional) subspace 

opera·tor 

P X+ X 
n n 

X 
n 

of X and a projection 



i.e. 

(4. 2) 

p 
n 

then looking for 

p f 
n 
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v E X 
n n 

For example, if one chooses mesh points 

0 1 

then one might take 

such that 

X {v: v is a function on [0,1] which coincides on each 
n 

subinterval (ti-l'ti) with a polynomial of 

degree ;:;; k-1 } . 

In the Galerkin method, X= L 2 (0, 1) and P 
n 

PG is the Hilbert space 
n 

projection onto X 
n 

In the collocation method, X=C[O,l] and P =PC 
n n 

is the interpolation operator for the chosen collocation points (k on 

each subinterval) . After expressing v 
n 

in terms of a basis for X 
n 

(4.2) reduces to an nkX nk system of algebraic equations; see [1}. 

The coefficients of this system involve integrals which will nearly always 

be approximated by numerical quadratures, and evaluating these coefficients 

may require more computing time than solving the linear system. 

One can think of the standard error analysis for v n 
in terms of 

stability and consistency. The stability part is a matter of showing that 

(I±PnRel-l exists and of estimating its norm as n + oo • The consistency 

part is a matter of estimating the norm of 

(I±P R ) (v -v) = (P -I)v , 
n e n n 

and it is clear that the two results imply an error estimate for vn , viz. 

( 4. 3) 
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The consistency part is reasonably simple once one knows the qualitative 

behaviour (3.6) of the derivatives of v . A suitable type of mesh is given 

by 

If q = 1 , 

t. (i/n) q , i = 0 (1) n , q f: 1 • 
l 

then the points t. 
l 

are equally spaced, but as q is increased 

the mesh points are concentrated near zero where the solution is changing 

rapidly. One finds, see [3], that for the Galerkin projec·tion 

II (I-P~) vll2 -k 
;;;en sup 

O<s;;;l 

k-a k 
js Dv(s)j 0 (_!._) 

k 
n 

provided q> r/(a+1) , where the constant c is independent of u and n . 

Similarly, if one chooses points Sj satisfying 

and takes the colloca·tion poin·ts on (ti-l'ti) to be 

i.e. the X,. 
lJ 

1 
x .. -2{<1-s.lt. 1 + <Hs.lt.}, i=l(lJn, j=l(lJk, 
lJ J l- J l 

are the shifted to the ith subinterval, then 

II (I-PC) vii ;;; c n -k 
n co 

sup 
O<s;;;l 

r-a r 
js- Dv(s)j 

provided q > r/a . 

The question of stability, on the other hand, is much deeper, owing 

to the fact that since is not compact we cannot appeal to collective 

compactness. If one can show that there is a 6 > 0 for 'vhich 

(4.4) 

unformly in n sufficiently large, then the simple geometric series bound 
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follows immediately. In the case of the Galerkin me-thod, (4.4) is easy 

however for the collocation method IIPCII > 1 in 
n 

general. In [2], (4.4) was established by ad hoc techniques for some 

particular colloca·tion schemes, as well as certain stability results 

based on ·the ma·trix analogues of (4.3) and (4.4). A disadvarrtage of 

stability analyses based on (4 A) is 'chat this condition is sufficient 

but not necessary, a.nd indeed there are probably stable schemes for which 

(4 .4) does not hold. .A further complication is t.hat ·the use of numerical 

quadJ~atures effect.ively modifies the projec'cion opera·tor p 
n 

so the 

easy stability proof for the Galerkin method is not as useful as it may 

appear. 
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