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ULTRAPOWERS IN THE LIPSCHITZ AND UNIFORM
CLASSIFICATION OF BANACH SPACES

Ian Roberts

Ultraproducts were introduced into Model Theory by Skolem in the 1930s.
For some time they have been used in algebra. Their use in Analysis
commenced in the 1970s. A major contribution was made by Stern in 1978
when he derived the Banach space versions of the Lowenheim-Skolem Theorem
and the Keisler-Shelah Theorems which appear in this paper. More recently
Heinrich and Mankiewicz have made a significant contribution to the use of
ultrapowers in the Lipschitz and Uniform Classification of Banach spaces.
They considered various Banach spaces (with certain natural properties)
which were related by some uniform or Lipschitz mapping. Using Ultrapower
techniques many useful results were obtained, including greatly simplified
proofs of some difficult results of Ribe [1976]1, [1978].

In many cases the existence of some (non-=linear) uniform or Lipschitz
mapping between two Banach spaces (with certain additional properties)
guarantees the existence of a linear mapping between them.

In this paper the intention is to provide a look at some of the most
critical results in this area, to provide a feeling for the use of them,
and to finally prove the result that the ultrapowers of certain ﬁniformly

equivalent Banach spaces are in fact linearly equivalent.

FILTERS

A filter on an index set I is a non-empty family F of subsets of

I which is
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1) Closed under finite intersections, i.e. if A,B € F then
ANBEeF.
and 2) Closed under supersets, i.e. if AcCcBCI and A € F then
BeF .

F is said to be a proper filter iff ¢ ¢ F .

For our purpcses all filters are aséumed to be proper.

An ultrafilter is a filter which is maximal w.r.t. ordering by
containment. This occurs iff VYA ¢ I only one of A and I\A e U . As a
corollary to this we have that if I = Il U...U In (a finite union) then
at least one Ij e U (3 e {l,...,n}).

In a Banach space if (x,),. is a family of elements of X indexed

1 i€l

by I then (xi) converges over U to x , written lim X, = % , iff for

U
every ball centred x radius € (denoted B(x,€))
{iex € B(x;€)} € U .
THE BANACH SPACE ULTRAPRODUCT
Let (X,). be a family of Banach spaces, I being an index set.

1" iel

Consider the Banach space &w(I,Xi) which consists of all families (Xi)

in I Xi (the cartesian product of the Xi over I ) with

iel
M)l = sup Ix. I <o |
i X i
i€l
Let
Nu = {(xi) € &w(I,Xi) : 1lim “xiﬂ = 0} .
U
The ultraproduct of the family (Xi)i€I w.r.t. U is the guotient space

(Xi)u = ILm(I,Xi)/Nu with the usual quotient norm. If all the Xi are

equal to a certain space X then we refer to their ultraproduct w.r.t. U

as the ultrapower of X w.r.t. U , and denote it by =, -

A key result concerning the norm of elements of (Xi)u is
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l(x,) I = lim x|
i'u - i

If X and Y are Banach spaces we will say that X and Y satisfy the
Decomposition Scheme (DS) if one of the following conditions is met:
1) X=EEXeX and YEY @Y ;
or 2) Either X or Y contains a complemented subspace isomorphic to
QP(X) ( lp(Y) respectively) for some p , 1 < p < ® |
(Here KP(X) denotes the space of all sequences (xi) e X s.t.

© 1/p
Izl = [2 nx.up) <)
1 : 1

i=1

The importance of this is in the following theorem of Pelczynski:

DECOMPOSITION THEOREM: Assume that the Banach spaces X and Y satisfy
the D.S. If each of the spaces X,Y is isomorphic to a complemented
subspace of the other, them ¥ and Y are isomorphic.

We now present the Banach space version of two fundamental theorems of

Model Theory. Their Banach space form is due to Stern [1978].

LOWENHEIM-SKOLEM THEOREM: Let x be a Banach space and let Y c X be a
subspace, Y separable. Then there exists a separable subspace
%2,Y ¢ 8 c X, aud an ultrafilter U s.t. (B)u and (X)u are isometrically-

isomorphic.

KEISLER-SHELAH ISOMORPHISM THEOREM: Let X be a Banach space and let u
and VvV be ultrafilters on I and J respectively. Then there exists an
ultrafilter W on an index set K s.t. the spaces (X) and  (X)

uxw VW

are isometric. (Note that (X) and  (X) can be shown to be
uxw VEW ‘

equivalent to ((X)u)w and (x), respectively. )

The following result can be shown to be true.
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LEMMA 1: If x and Y are Banach spaces which satisfy the D.S. then
there exists an ultrafilter U on an index set I s.t. (x)u and W,
satisfy the D.s.

Heinrich and Mankiewicz {[1980] have derived several results concexning
spaces with some uniform mapping between them. For our purpose we present

three of their lemmas which are necessary for our final result (Theorem 5).

LEMMA 2: Iy Y <s a super-reflexive Banach space and F :X + Y is a
uniform embedding s.t. F(X) 48 the range of a uniform projection in ¥ ,
then X 1s super-reflexive as well.

Note: A space is super-reflexive iff it is uniformly convexifiable,

and hence is a stronger condition than reflexivity.
Proof: (sketch only)

It can be shown that the assumptions imply that (X)u is Lipschitz
embeddable into (Y)u and that (Y)u must also be super-reflexive. By an
infinite dimensional version of the Rademacher Theorem (see Mankiewicz
[1973]), each separable subspace of X (regarded as a subspace of (X)u )
embeds isomorphically into (Y)u and so is super-reflexive. This‘implies

that X is also super-reflexive.

LEMMA 3: If X <8 a super-reflexive Banach space and F :X -~ Y 1is a
uniform embedding s.t. F(X) is the range of a uniform projection in Y ,
then there exists an ultrafilter U s.t. X is isomorphic to a complemented

subspace of W, (denoted by X S (0 Je
Proof: (Sketch only)

By the Lowenheim-Skolem Theorem there exists a separable subspace #&

of X and an ultrafilter U s.t. (Z)u and (X)u are isometric. By
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Lemma 2, X is super-reflexive and so % is also. It can then be shown
that & Cet(Y)u and so (Z)u Cat(Y)uxu . So as (X)u is isometric to

B, ) S .

LEMMA 4: If Y <s a super-reflexive Banach space uniformly homeomorphic
to another Banach space X , then there exists an ultrafilter

U s.t. (x)u o (Y)u and (Y)u S (X)u .

Proof: By Lemma 2 X is also super-reflexive. By Lemma 3 there exist

ultrafilters Ul and U2 s.t.

(1) X e,

(2) Y G (X)u .
2

By the Keisler-Shelah Theorem, there exists an ultrafilter U, s.t.

(X)U3 and (X)U2 XU3 are isometric.

Taking ultrapowers w.r.t. U3 in (1), we get

(3) (X) e (V) and
U < U0
(4) (¥) < (X) .
U3 (= U3
Applying the theorem again, there is an ultrafilter U4 s.t.
(Y) is isometric to (¥) .
X X X
Uy XU3 %0, U3 %0y

From (3) and (4) we derive

(%) cs (Y)
U3 XU4 [t U3 XU4

and
(Y) < (X) .
X X
U3 U4 (< U3 U4

Letting U = U3 XU4 completes the proof.
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As our final result we see that under certain natural conditions the
uniform eguivalence of two Banach spaces is sufficient to guarantee that
the closely related structures — the ultrapowers of the spaces — are

linearly equivalent.

THEOREM 5: Assume that X and Y are uniformly homeomorphic Banach -
spaces which satisfy the D.S. Assume that Y is super-reflexive. Then

there exists an ultrafilter U s.t. ) and (v) ~ are Tgomorphic.

Proof: By Lemma 1 and Lemma 4 there exists an ultrafilter U s.t. (X)u
and (Y) satisfy the D.S. and s.t. (X) < (Y) and (¥Y) o (X) . So
u u < u u < u

by the Decomposition Theorem (x)u and (Y)u are isomorphic.
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