w^{2,p} REGULARITY FOR VARIFOLDS WITH MEAN CURVATURE

John Duggan

Suppose $V=\underline{\underline{v}}(M,\widetilde{\theta})$ is a rectifiable n-varifold in \mathbb{R}^{n+k} with generalised mean curvature $\underline{H}\in L^p(\mu,\,\mathbb{R}^{n+k})$ in U , that is

$$\int div_{\underline{M}} X d\mu = - \int X \cdot \underline{\underline{\underline{H}}} d\mu$$

for all $X \in C_0^1$ (U, \mathbb{R}^{n+k}), where $\mu = \mathcal{H}^n L \overset{\sim}{\theta}$. Then, if $\widetilde{\theta} \geq 1 \, \mu$ -ae in U, p > n, $0 \in \operatorname{spt} \mu$ and $B_{\rho}(0) \subset U$, the regularity theorem ([A]) states that there are $\gamma = \gamma(n,k,p)$, $\delta = \delta(n,k,p) \in (0,1)$ such that

$$\frac{\mu(B_{\rho}(0))}{\omega_{n}\rho^{n}} \leq 1 + \delta , \qquad \left(\int_{U} \left|\underline{\underline{H}}\right|^{p} d\mu\right)^{1/p} \rho^{1-n/p} \leq \delta$$

imply that spt $\mu \cap B_{\gamma\rho}(0) = q(\text{graph } u) \cap B_{\gamma\rho}(0)$ for some linear isometry q of \mathbb{R}^{n+k} and some $u \in C^{1, 1-n/p}(B_{\gamma\rho}(0), \mathbb{R}^k)$. (Here $B_{\gamma\rho}^n(0) = B_{\gamma\rho}(0) \cap \mathbb{R}^n.$) We show here that a higher regularity prevails, and that u is actually $W^{2,p}$ and that the density function $\tilde{\theta}$ is $W^{1,p}$.

We write (1) in non-parametric form:

(2)
$$\begin{cases} \int \theta \sqrt{g} g^{ik} D_{k} \eta = - \int \theta \sqrt{g} H^{i} \eta, & 1 \leq i \leq n \\ \int \theta \sqrt{g} g^{mk} D_{m} u^{j} D_{k} \eta = - \int \theta \sqrt{g} H^{n+j} \eta, & 1 \leq j \leq k, \end{cases}$$

for $\eta \in C_0^1(\Omega)$, Ω a domain in \mathbb{R}^n . Because the results we obtain hold quite generally, as well as in order to simplify the exposition, we consider, instead of (2), the following system:

(3)
$$\int_{\Omega} \theta \Phi_{\underline{i}}^{S}(Du) D_{\underline{i}} \eta = -\int_{\Omega} \theta H^{S} \eta , \qquad 1 \leq s \leq n+k .$$

Then we have

THEOREM: Suppose $\Phi_{\mathbf{i}}^{\mathbf{S}} = \mathbb{R}^{nk} \to \mathbb{R}$ is $\mathbf{c}^{\mathbf{1}}$ for each $1 \le \mathbf{s} \le \mathbf{n} + \mathbf{k}$, $1 \le \mathbf{i} \le \mathbf{n}$, that $\Phi_{\mathbf{i}}^{\mathbf{S}}$ has a $\mathbf{c}^{\mathbf{1}}$ right inverse, that is there is $\Phi_{\mathbf{S}}^{\mathbf{j}} : \mathbb{R}^{nk} \to \mathbb{R}$ which is $\mathbf{c}^{\mathbf{1}}$ for each $1 \le \mathbf{s} \le \mathbf{n} + \mathbf{k}$, $1 \le \mathbf{j} \le \mathbf{n}$ and satisfies

(4)
$$\sum_{g=1}^{n+k} \Phi_{\mathbf{i}}^{\mathbf{S}}(\mathbf{p}) \quad \widetilde{\Phi}_{\mathbf{S}}^{\mathbf{j}}(\mathbf{p}) = \delta_{\mathbf{i}\mathbf{j}} \qquad \mathbf{p} \in \mathbb{R}^{nk},$$

that the following skew symmetry condition holds:

(5)
$$\sum_{s=1}^{n+k} ((D_t \Phi_i^s(p)) \tilde{\Phi}_s^j(p) + (D_t \Phi_m^s(p) \tilde{\Phi}_s^j(p)) = 0 ,$$

for all $p \in \mathbb{R}^{nk}$, $1 \le t \le k$, $1 \le i,j,m \le n$, and that the last k equations of (3) satisfy the Legendre-Hadamard ellipticity condition, that is

(6)
$$\sum_{\substack{\Sigma \\ \text{s,t=l i,j=l}}}^{k} \sum_{\substack{n \\ \text{t}}}^{n} D \Phi_{i}^{n+s}(p) \zeta_{s} \zeta_{t} \xi^{i} \xi^{j} \ge \lambda_{p} |\zeta|^{2} |\xi|^{2}$$

for all $p \in \mathbb{R}^{nk}$ with $|p| \leq P$, and all $\zeta \in \mathbb{R}^k$, $\xi \in \mathbb{R}^n$, where $\lambda_p > 0$. Suppose also that $u = (u^1, \dots, u^k) : \Omega \to \mathbb{R}^k$ is in $C^{1,\alpha}(\overline{\Omega}, \mathbb{R}^k)$ for some $\alpha \in (0,1)$, with $\sup_{\overline{\Omega}} |Du| \leq P$, and that u solves (3), with $\theta \in L^{\infty}(\Omega)$, $1 \leq \theta \leq L_1$ L^n -a.e. in Ω , and $(H^1, \dots, H^{n+k}) \in L^{0}(\Omega, \mathbb{R}^{n+k})$ for $p_0 > n$; then

$$u \in W_{loc}^{2,p_0}(\Omega, \mathbb{R}^k)$$
, $\theta \in W^{1,p_0}(\Omega)$,

and

(7)
$$D_{j}\theta(x) = H^{S}(x) \cdot \Phi_{S}^{j}(Du(x)) \qquad L^{n} - a.e. \text{ in } \Omega.$$

Proof: (Outline) Let $\Omega_0 \subset \Omega$ with $d = dist(\overline{\Omega}_0, \partial\Omega)$. Let

$$r = 2\left(\frac{\log \alpha}{\log(1-\alpha)}\right) + 1 ,$$

and choose domains $\Omega_{\underline{i}}$, $1 \, \leq \, \underline{i} \, \leq \, \underline{r}$, with

$$\Omega_{0} \subset \Omega_{r} \subset \Omega_{r-1} \subset \ldots \subset \Omega_{1} \subset \Omega_{r}$$

with $\operatorname{dist}(\overline{\Omega}_{\mathbf{j}}, \partial \Omega_{\mathbf{j}-1})$, $\operatorname{dist}(\overline{\Omega}_{\mathbf{0}}, \partial \Omega_{\mathbf{r}})$, $\operatorname{dist}(\overline{\Omega}_{\mathbf{1}}, \partial \Omega) \geq \frac{d}{r+1}$, $j=2,\ldots,r$.

Let $0 < h < h_0 = \frac{d}{6(r+1)}$, $1 \le j \le n$, and replace η in (3) by $\Phi_s^j(Du_h)\eta$ for each $1 \le s \le n+k$, where for any $f \in L^1(\Omega)$, f_h denotes its mollification. Then, using (4) and (5), we have

(8)
$$\int_{\Omega_{1}} \theta \, D_{j\eta} = \int_{\Omega_{1}} f_{h}^{j,i} \, D_{i\eta} + \int (f_{h}^{j} + \tilde{f}_{h}^{j}) \eta$$

j = 1, ..., n , $\eta \in C_0^1(\Omega_1)$, where

$$\begin{cases}
f_h^{j,i} = \theta(\Phi_i^s(Du_h) - \Phi_i^s(Du)) & \Phi_s^j(Du_h), \\
\tilde{f}_h^s = -\theta H^s & \tilde{\Phi}_s^j(Du_h), \\
f_h^j = \theta(\Phi_i^s(Du_h) - \Phi_i^s(Du)) & D_{x_i} & \tilde{\Phi}_s^j(Du_h).
\end{cases}$$

We digress here to develop some general results concerning functions which satisfy (8) and (9). For $0 < h \le h_0$ we let

$$\Omega_{h} = \{x \in \Omega : dist(x, \partial\Omega) > h\}$$

and for f \in L^q(Ω) , 1 \leq q \leq ∞ , γ \in (0,1) and z \in $\overline{\mathbb{B}}_1$ (0) we let

$$\triangle_z^h f(x) = f(x + hz) - f(x)$$

and

$$\mathfrak{H}^{\gamma,q}(\Omega) \; = \; \{ \mathbf{f} \; \in \; \mathbf{L}^q(\Omega) \; : \; \sup_{\mathbf{z} \; \in \; \partial \mathbf{B}_1(0)} \; \frac{1}{h^{\gamma}} \; \| \boldsymbol{\Delta}_{\mathbf{z}}^h \mathbf{f} \|_{q,\Omega_h} \; < \; \infty \} \; .$$

(The spaces $\Re^{\gamma,q}$ are known as Nikolskii spaces.) The following inequalities are easy to prove:

$$(10) \qquad \|\Delta_{\mathbf{z}}^{\mathbf{h}} \mathbf{f}\|_{\mathbf{q}, \Omega_{2\mathbf{h}_{0}}} \leq \mathbf{h} \left[\int_{\Omega_{\mathbf{h}_{0}}} \left| \left(\frac{1}{\mathbf{h}^{n}} \right)_{\mathbf{B}_{\mathbf{h}}(\mathbf{x})} \mathbf{f}(\mathbf{y}) \mathbf{D}_{\mathbf{y}} \rho \left(\frac{\mathbf{x} - \mathbf{y}}{\mathbf{h}} \right) d\mathbf{y} \right] \cdot \mathbf{z} \right|^{\mathbf{q}} d\mathbf{x} \right]^{1/\mathbf{q}}$$

$$+ 2 \sum_{\mathbf{i}=1}^{n} \int_{0}^{\mathbf{h}} \frac{1}{\mathbf{t}^{n+1}} \|\int_{\mathbf{B}_{\mathbf{i}}(\mathbf{x})} \mathbf{f}(\mathbf{y}) \mathbf{D}_{\mathbf{y}_{\mathbf{i}}} \left[(\mathbf{x}_{\mathbf{i}} - \mathbf{y}_{\mathbf{i}}) \rho \left(\frac{\mathbf{x} - \mathbf{y}}{\mathbf{t}} \right) \right] d\mathbf{y} \|_{\mathbf{q}, \Omega_{\mathbf{h}_{0}}} d\mathbf{t}$$

$$(11) \quad \sup_{\Omega_{2h_0}} |\Delta_z^h f(x)| \le h \quad \sup_{x \in \Omega_{h_0}} \left| \frac{1}{h^n} \left(\int_{B_h(x)} f(y) D_y \rho\left(\frac{x-y}{h}\right) dy \right) . z \right|$$

$$+ 2 \sum_{i=1}^{n} \int_0^h \frac{1}{t^{n+1}} \sup_{x \in \Omega_{h_0}} \left| \int_{B_t(x)} f(y) D_{y_i} \left((x_i - y_i) \rho\left(\frac{x-y}{t}\right) \right) dy \right| dt .$$

Using (10) and (11) we can prove

LEMMA 1:
$$If \ f \in L^{q}(\Omega)$$
, $1 \le q \le \infty$, $f_{h}^{j,i}$, $f_{h}^{j} \in L^{q}(\Omega)$, $f_{h}^{j} \in L^{q_{0}}(\Omega)$, $1 \le i,j \le n$, $0 < h \le h_{0}$ with $q_{0} = \frac{n}{1-\gamma}$, $\|f_{h}^{j}\|_{q_{0},\Omega} \le c$,
$$\|f_{h}^{j,i}\|_{q_{i}\Omega} \le ch^{\gamma}$$
, $\|f_{h}^{j}\|_{q_{i}\Omega} \le ch^{\gamma-1}$

for each $\,1 \leq i,j \leq n \,$ and each $\,0 < h \leq h_0^{}$, where $\,\gamma \in (0,1) \,$ and $\,c \,$ is independent of $\,h \,$ and with

$$\int f D_{j} \eta = \int f_{h}^{j,i} D_{i} \eta + \int \left(f_{h}^{j} + \tilde{f}_{h}^{j} \right) \eta$$

for each $\eta \in C_0^1(\Omega)$, $1 \le j \le n$ and $0 < h \le h_0$, then $f \in \mathbb{H}^{\gamma,q}(\Omega_h)$.

Also, by a simple variation of the difference quotient method, we have

LEMMA 2: Let $\,v^S\,\in\,C^{\,1}(\overline\Omega)$, $1\,\leq\,s\,\leq\,k$, be a solution to the system

$$\int_{\Omega} \omega(x) \ \Psi_{\dot{1}}^{S}(Dv) \ D_{\dot{1}} \eta = \int_{\Omega} g^{S} \eta , \qquad 1 \leq s \leq k ,$$

for $\eta \in C_0^1(\Omega)$, where $\omega \in C(\overline{\Omega})$, $\omega \geq 1$, $g^S \in L^2(\Omega)$, $1 \leq s \leq k$, $\Psi_{\dot{\mathbf{i}}}^S$ is c^1 in all its variables, $1 \leq i \leq n$, $1 \leq s \leq k$ and

for all $\zeta \in \mathbb{R}^k$, $\xi \in \mathbb{R}^n$ and $p \in \mathbb{R}^{nk}$ with $|p| \le \sup_{\Omega} |Dv|$, where $\lambda > 0$. Then, if $\omega \in \mathbb{H}^{\gamma,2}(\Omega)$, we have

$$D_{i}v^{s} \in \mathbb{R}^{\gamma,2}(\Omega_{0})$$
 , $1 \le i \le n$, $1 \le s \le k$,

for any $\Omega_0 \subset \Omega$.

We return to the proof of the theorem: Lemma 1, with $q=\infty$, and (8) and (9) immediately imply the Hölder continuity of θ with exponent $\min(\alpha, 1-\frac{p}{p_0})$. From (9) we have

$$\begin{cases} \|\mathbf{f}_{h}^{i,j}\|_{2,\Omega_{1}} \leq c\|\mathbf{D}\mathbf{u}_{h} - \mathbf{D}\mathbf{u}\|_{2,\Omega_{1}} \\ \|\mathbf{f}_{h}^{j} + \tilde{\mathbf{f}}_{h}^{j}\|_{2,\Omega_{1}} \leq ch^{Q-1} \|\mathbf{D}\mathbf{u}_{h} - \mathbf{D}\mathbf{u}\|_{2,\Omega_{1}} + c , \end{cases}$$

so that replacing h by h $\frac{1}{1-\alpha}$ and using Lemma 1, we have

$$\theta \in \mathbb{H}^{\frac{\alpha}{1-\alpha},2}(\Omega_2)$$
,

provided $\alpha \leq \frac{1}{2}$. Lemma 2 now implies that

$$D_{i}u^{s} \in \mathbb{R}^{\frac{\alpha}{1-\alpha}, 2}(\Omega_{3})$$
, $1 \le i \le n$, $1 \le s \le k$.

Again replacing h by $h^{\frac{\alpha}{1-\alpha}}$ in (13) we see that

$$\theta \in \mathfrak{H}^{(1-\alpha)^2,2}(\Omega_3),$$

provided $\frac{\alpha}{(1-\alpha)^2} \le 1$. This procedure can be iterated $t = \frac{\log \alpha}{\log(1-\alpha)}$ times (so that $\frac{\alpha}{(1-\alpha)^t} \le 1$ and $\frac{\alpha}{(1-\alpha)^t} + \alpha > 1$) to obtain $\frac{\alpha}{\log(1-\alpha)^t} = \frac{\alpha}{\log(1-\alpha)^t} + \alpha > 1$

Letting h \downarrow 0 in (8) and noting that none of the quantities depends on Ω_0 , gives (7). The regularity of u follows by standard elliptic theory.

It is straightforward to check that the Euler-Lagrange equations arising from arbitrary C^2 elliptic parametric integrands satisfy the hypotheses of the theorem. Thus we have the regularity as stated. Furthermore we see that the theorem readily implies a constancy theorem for any varifold, stationary with respect to a C^2 elliptic parametric integrand, whose support is contained in a $\text{C}^{1,\alpha}$ manifold for some $\alpha>0$.

REFERENCES

- [A] W.K. Allard, 'On the first variation of a varifold', Annals of Math. 95 (1972), 417-491.
- [D1] J. Duggan, 'Regularity theorems for varifolds with mean curvature', to appear.
- [D2] J. Duggan, 'W², P regularity for varifolds with mean curvature', to appear.
- [F] H. Federer, Geometric Measure Theory, Springer-Verlag, Berlin, Heidelberg, New York (1969).
- [GM] M. Giaquinta, 'Multiple integrals in the calculus of variations and non-linear elliptic systems', *Vorlesungsreihe* SFB 72, no. 6, Bonn (1981).
- [GT] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer-Verlag, Berlin, Heidelberg, New York (1984).
- [K] A. Kufner, O. John, and S. Fučik, Function Spaces, Noordhoff International Publishing, Prague, Academia (1977).
- [MS] J. Michael and L. Simon, 'Sobolev and mean-value inequalities on generalised submanifolds of \mathbb{R}^n ', Comm. Pure Appl. Math. $\underline{26}$ (1973), 361-379.
- [MC] C. Morrey, Multiple Integrals in the Calculus of Variations,

 Springer-Verlag, Berlin, Heidelberg, New York (1966).
- [P] J. Peetre, 'New thoughts on Besov spaces', Duke University

 Mathematics Series 1 (1976).
- [SL] L. Simon, 'Lectures on geometric measure theory', Proc. of C.M.A., A.N.U., Vol. 3 (1983).
- [SE] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton (1960).