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w?’® REGULARITY FOR VARIFOLDS WITH MEAN CURVATURE
John Duggan

x s . . + .
Suppose V = g(M,G) is a rectifiable n-varifold in R" k with

. +k, . .
generalised mean curvature H € Lp(p, i ) in U , that is

(1) J divMXdu = —J X.H du

+ ~
for all X e C;'(U, wr" k), where W = H' L g, Then, if 6 = lu-ae in U,
p>n, 0 spt U and Bp(O) c U , the regularity theorem ([A]) states

that there are Yy = y(n,k,p) , § = §(n,k,p) € (0,1) such that

u(B_(0)) -
___117;__ <1+6, (J l® am /P ot P <
w o u

imply that spt U n BYO(O) = g(graph u) n B p(O) for some linear isometry

v
k

g of n§n+ and some u € Cl' l_n/P(Byp(O), Bgi). (Here

B$p(0) = BYD(O) n Hf].) We show here that a higher regularity prevails,

and that u is actually Wz’P and that the density function 8 is Wl'p.

We write (1) in non-parametric form:

r . .
J 8 /g g12 DN = —J 8 /g umn, 1<i<n
(2)
. 4
L J 8 /g ng Dmlgj N = —j 6 /g8 q, 1<j<k,
for n e C1 Q) ,  a domain in R™. Because the results we obtain hold

0

guite generally, as well as in order to simplify the exposition, we

consider, instead of (2), the following system:

(3) J 0 @?(Du) D.n = —J GHSn B 1 <s < nt+k .
@ ¢ * Q

Then we have
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k . .
R+ R is cl for each 1 <s <n+tk, 1 £i<n,

k

THEOREM: Suppose @i =
that @is has a ct right inverse, that is there is @; :RY + R which
ie ¢t for each 1 < s <n+k , 1 £3 <£n and satisfies

n+k

S ~3 _ nk
(4) sfl o, (p) & (p) = aij pe R,
that the following skew symmetry condition holds:
nek s %3 s %3
(5) sfl ( (‘Dpt e @) o () + D @ (p) O (p)) =0,

m m

nk
2

for all p e R 1<t<k, 1<i,jm<sn, and that the last k

equations of (3) satisfy the Legendre-Hodamard ellipticity condition, that

is
k n : :
+ 3 2 2
©) T2 o, 9w gz g 2y |g]fE]
s,t=1 i'j=1 n] ‘
k

for all p e B with |p| <P, and all z;e]Rk,cZeIRn, where A, > 0.

k 1,a

Suppose also that u = (ul,...,u )+ > B is in c g, IRk) for

some o € (0,1) , with sup|Du| <P , and that u solves (3), with
194

P n+k

) ¢ 1 %, "

0 erL’(® ,120<L P-ae in 0, and @l ... 5

for Po> B then

2,p,

uew 1:P0
1

k
OC(Q’IR)' 0 e W (Q)l
and

(n D0 () = 15 (x) .@i(Du(x)) [®-a.e. in Q.

Proof: (Outline) Let Q,ccf with d=dist(s'20, 3N . Let

and choose domains - Qi ;, L <1 <r , with
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with diSt(Qj' Bﬂj_l) 7 diSt(Qo, BQI) 12 diSt(Qll BQ) = 7 ] = 2,...,r .

r+1

d

g?;friy-, 1 <3 <£n , and replace n in (3) by

Let 0 < h K< hO =
@:(Duh)n for each 1 < s < nt+tk , where for any £ ¢ Ll(Q) B fh denotes

its mollification. Then, using (4) and (5), we have

8 9D, = ey g3 4 3
(8) JQ in IQ h in I( h h)n
1 1

j=1l,...,m , N e cé(Ql) ; where

j.i_ S S 3
g = 6(<I>i(Duh) - @i(Du)) @s(Duh) ’
s _ s ~j
(9) fh = - OH @S(Duh)
32 s &8 =3
fh = e(@i(Duh) ®i(Du)) Dxi @s(Duh) .

We digress here to develop some general results concerning functions

which satisfy (8) and (9). For 0 <h < h0 we let
Q = {x ¢ Q : dist(x, ) > h} ,
and for £ ¢ Lq(Q) r 1l £g <o, ve (0,1) and z ¢ 51(0) we let

AZf(x) = £({x + hz) - £(x)

and
1 h
Bh@ = (£ i@+ swp = AEN < ®} .
z eBBl(O) nY q,ﬁh
h>0
(The spaces HY'q are known as Nikolskii spaces.) The following

inequalities are easy to prove:

{ -
ao walEl o < h” lt—%f f(y)Dyp[z{Ty}dy}.z
2h0 Qho h Bh(X)

q dX}l/q

1

n h
+2 Z j uf £(y)D fua -y.)pFiZiq]dyH dt
i=1 Jo 71 B, (x) vyl TR t q'Qho
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(11) sup lAZ £(x)| £h  sup !-]-'- U f(y) D p[ﬁ—;—y-] dy].z
Q x €5 n® VB (x) ¥y
2h0 ho h

" sup IJ £(y) D [u; -y )p[x'_y}}d ldt
Bt(X) Y Yi’ i itle Y ’

n
+2 Z J il
i=1 70 £ x e
B,

Using (10) and (11) we can prove

L. . q
LEMMA 1: If fe1d(@ , 1<qg<o, f;'l, f}{ e 1Y@ , f; e 2@ ,
< i,9 £ < 7 = n J <
1<i,j<n, Q<h_ho with e 1oy l|fhllq0'9_c,
jri < Y j < Y'l
(12) ufh llq'Q < ch' Ilfhllq'Q < ch

for each 1 < i,j <n and each 0 < h < h, where Y € (0,1) and c +is

independent of h and with

r f s s . .
Js1 J ]
= +
Jijn th D, “fh + fh]n
1
foreach necC(Q) , 1<j<n and 0<h<h_, then fEHYIq(Qh)
0 0 0
Also, by a simple variation of the difference quotient method, we have

LEMMA 2: et v° e c*(@ , 1 <s <k, be a solution to the system

J w(x) Wi(Dv) DN
Q

]
PO—
D
[le}
0

3
~
i
IA
0]
A
w

for n e cé(Q) , where wec(® , w21, gs € L2(Q) ,1<s<k, ¥ is

i
ot in all its variables, 1 < i <n , 1 <s <k and
: = ¥e (p) g = ag)?e)?
D, Y T 5 EE 2A[c :

s,t=1 i,j=1 pg

nk

forall [ e R, Eec B and p ¢ B with |p| < sup |pv| , where
Q

A>0. Then, 1f w € HY’Z(Q) ., we have

A
=
A
=]
et
I
0]
IA
=
-

pv° e w2 , 1
i 0

for any Qo cc Q.
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We return to the proof of the theorem: Lemma 1, with g = « , and (8)

and (9) immediately imply the HSlder continuity of 6 with exponent

min (o, l—-i) . From (9) we have
0

nededy < clpu_ - pul
(13) h 2’91 h Z'Ql

o, =3 o-1

+ < - + e

Hfh fh"2,Q ch ||Duh Du"Z,Q e,
1 1
1

so that replacing h by hl._a and using Lemma 1, we have

o,
1-a’

2
Q) .

provided o <% . Lemma 2 now implies that

Qo
s l1-a

IA
=
IA
=}

~
[
A
w
A
~
o

(Q3) ’ 1
[¢]

Again replacing h by hlfa in (13) we see that

o
2
1~ 2
0 ent ¥ 2,
3
provided — <1 This procedure can be iterated t = —1og o -
2 log(l -a)
(1-a) = _
times (so that —% < 1 and ———QL——-+ o > 1) to obtain
t t
(1-a) (1-a)
N
t
Dius € H(l.-a) (Qr) . 1 <i<n,1l<s<=<k.

Letting h ¢ 0 in (8) and noting that none of the quantities depends on‘
QO , gives (7). The regularity of u follows by standard elliptic theory.
It is straightforward to check that the Euler-Lagrange equations

arising from arbitrary C2 elliptic parametric integrands satisfy the
hypotheses of the theorem. Thus we have the regularity as stated.
Furthermore we see that the theorem readily implies a constancy theorem for
any varifold, stationary with respect to a 02 elliptic parametric

1,0

integrand, whose support is contained in a C manifold for some o > 0.



106

REFERENCES

[a]

[D1]

(p2]

[F]

[eM]

[GT]

(K]

[MS]

[Mcl

[Pl

[sL}

[sE]

W.K. Allard, 'On the first variation of a varifold', Annals of
Math. 95 (1972}, 417-491.

J. Duggan, 'Regularity theorems for varifolds with mean curxvature',
to appear.

J. Duggan, 'W2'p

regularity for varifolds with mean curvature', to
appear.

H. Federer, Geometric Measure Theory, Springer-Verlag, Berlin,
Heidelberg, New York (1969).

M. Giaguinta, 'Multiple integrals in the calculus of variations and
non-linear elliptic systems', Vorlesungsreihe SFB 72, no. 6, Bonn
(1981).

D Gilbarg and N. Trudinger, Elliptic Partial Differential Equations
of Second Order, 2nd ed., Springer-Verlag, Berlin, Heidelberg, New
York (1984).

A. Kufner, O. John, and S. Fulik, Fumction Spaces, Noordhoff
International Publishing, Prague, Academia (1977).

J. Michael and L. Simon, 'Sobolev and mean-value inequalities on
generalised submanifolds of R'', Comm. Pure Appl. Math. 26 (1973),
361-379.

C. Morrey, Multiple Integrals in the Calculus of Variations;
Springer-Verlag, Berlin, Heidelberg, New York (1966).

J. Peetre, 'New thoughts on Besov spaces', Duke University
Mathematics Series 1 (1976).

L. Simon, ‘'Lectures on geometric measure theory', Proe. of C.M.A.,
A.N.U., Vol. 3 (1983).

E. Stein, Stngular Integrals and Differentiability Properties of

Funcetions, Princeton University Press, Princeton (1960).



