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SOLVABILITY OF DIFFERENTIAL OPERATORS |1}

SEMISIMPLE LIE GROUPS

F.D, BATTESTI and A.H. DOOLEY

1. INTRODUCT ION

Let G be a noncompact, connected, semisimple Lie group with finite
centre and P a differential operator on G. P is left invariant if
for all g ¢ G and for all £ ¢ C”(G), PLgf = Lng, where Lg denotes

left translation., Similarly one defines right invariance and bi-

invariance,

Elements X of the Lie algebra g act on c(G) by

-4
(X£)(g) = dt't:O f(g exp tX)
These define left invariant operators and in fact every left invariant
operator is obtained by the extension of this map to the universal

enveloping algebra U(gc). The bi-invariant operators correspond to the

centre Z(gC) of U(gc).

DEFINITION A differential operator P has fundamental solution E if

E is a distribution (in ® ’) such that PE = 3,

We say that P is locally solvable if PCw(V)_E CZ(V) for some

neighbourhood V of the identity, and P is globally solvable if

PCT(G) = C (@),
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2. HISTORY
Some of the major results concerning these concepts are as follows.
THEORBM  (Helgason [6]) (1) We have local solvabrlity for all

P ¢ Z(g).

(11) For all G-invarisnt operators on G/K, PC™(G/K) =
Cw(G/K) ., where K denotes a maximal compact subgroup of G.
EXAMPLE (Cerezo and Rouviére [4]) If G is complex,the imaginary

part of the complex Casimir operator belongs to Z(g) but is not

globally solvable,

(In fact, this operator reduces to the well-known example of H. Levy
of an operator without solution.)

This example notwithstanding, there are a number of results
concerning the solvability of the real Casimir operator C.

THEOREM (Rauch and Wigner [91) C Js always globally solvable,
THEOREM (Benabdallah-Rouviére, Johnson) (7)) J7£f G has no
discrete series, then C has & central fundamental solution.,

(11) If G has a discrete series, then C has a fundamental
solution on G,

The paper [3] actually constructs a fundamental solution:
Benabdallah [2] has shown that on SL(2,R), C can have no central
fundamental solution.

THEOREM (Rouviére [101) 7he egquality CP ' = D' polds if
G = SL(2,R) or SL(2,C) but farls If real rank G > 1.

As to other invariant operators, we have
THEORBM (Cerezo—Rouviére (41 7f G 1s complex and p 1is &
polynomial then vp(C) has a fundamental solution and Is globally

solvable,
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Finally, one result on general operators. Recall the Harish-Chandra
isomorphism for a Cartan subgroup H of G, This provides a map Tyt

Z(gc) > Sw(hc) (where the image is the Weyl group invariant elements of
the symmetric algebra of hc.)
THEOREM (Benabdallah-Rouviére [3]1). Suppose P ¢ 1(g) and suppose

there Is a 0-stable Cartan subgroup W of G such that rH(P)
has a fundamental solution on H. Then P has a central
Lundamental solution on G, amd PC (G) = C (G).

This result allows one to give a sufficient condition for
solvability in terms of the Cerezo and Rouviére necessary and sufficient
condition for solvability on H. However, considering the example of the
Casimir on SL(2,R), the existence of a central fundamental solution
seemg a rather special property.

fﬁ conclugion, we should like to mention some recent work of
Rouviére [11] and G. Lion [8] where conditions for existence of solutions

on symmetric spaces are considered in a rather general setting,

3. GROUP OONTRACTIONS

Our program for studying solvability of differential operators on G
is based on the use of group contractions to transfer the operators to
the Cartan motion group V x K associated to G. Then the results of
[1] can be applied. This general approach has something in common with
§6 of (111, where the passage between the symmetric spaces G/K and
(V = K)/K 1is considered.

Choosing a maximal compact subgroup K of G one may write

I =

+ p, where p 1is a vector space complement for k. Letting V

g [[|te}
n'wo

congidered as a vector group, we take the semidirect product
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V x K relative to the adjoint representation. This is the associated
Cartan motion group., (If G = SL(2,R) then V ® K is the Euclidean
motion group M(2).)

The contraction maps Ry VxK=G: (v,k)» exp')‘z.k are
approximate homomorphisms in the sense that

nil(nx(x)nx(y)) > xy as A e,

These maps have been used, for example in [5] to transfer harmonic
analysis from G to V K., We shall use them to transfer differential
operators.

DEFINITION Let P be an element of U(g). Define P)\' a linear
operator on TV x K), by )
(Py£) = P(£ 0 %)) o .

We have
PFIOPOSITION 1 (1) Suppose P)\ has a fundamental solution E N
and a;'ef.z'ne F)\ € 3l G) by

<Fk'f> = <El'f o nA>
Then F, 1s a fundamental solution for P.

(110 Suppose P has a fundamental solution F. Then

E}\ e D'V %K), defined by

_ 1
<EA’9> = <F, gOnx >
1s @& fundamental solution for PA .
PROOF One calculates that for £ ¢ D (G)
B _ t
®F, £ = <, PE> = <, (PO 0 ny>.
t _ _t
Now (*PE) o my = (*P), (£ 0 xy) = E(Ry)(E o ny).
Thus <PFA,f> = <pAEA'f o nk>'
1f EA is a fundamental solution for PA' then the right hand side is
f(nx(e)) = f(e), and so F)\ is a fundamental solution for P. If, on
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the other hand, F is fundamental solution for P then the same
calculation gives, for g ¢ 5§(V | K),
- -1, .
g(e) = <PF,g © N > = <PAEA'9>,
The hard work in the proof involves showing in (i) that FA eP @

and in (ii), that E, ¢ $w K. ]

This proposition allows us to pass between G and V ® K for each
fixed A. However, it is not very satisfactory since even if ‘P is a
bi-invariant operator on G, Pl will usually not even be left invariant
on V x K, Thus, there is no good method for finding a fundamental
solution for PA' In fact, using the computer package MACSYMA, an
explicit expression has been calculated for CA' where C is the
Casimir operator on SL(2,R). This expression currently runs to around
sixty pages of computer printout and is apparently not left invariant,
The p;oblem occurs with differentiations in the V direction. For K-
directions, things work out nicely.

LBWA 2 Suyppose that P 1s left (resp., right) K-invariant on

G. JThen P, is left (resp. right) K-invariant on V K.

A
PROOF Let k0 ¢ K. Then

knov
0
konx(v,k) = k0 exp%.k = exp——iﬁykok = nx((O,ko)(v,k))

and nx(v,k).k0 = nx((v,k)(O,kO)).

These facts, combined with the definition of PA’ prove the lemma,

The fact that =, is not a homomorphism is, of course, the reason

A
for this failure to preserve invariance of the operator. Nevertheless,

Y is an approximate homomorphism and, relying on this fact, one may

expand PA in a power series in A. It ig of interest to identify the
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dominant term in such an expansion. The derivative of the map Ry is

the map

¢A:Vok->g:Y+X->i-Y+X,YeV,Xek.

This map extends to a linear map, also denoted ¢J\: U(Vek) » U(g). Note

that ‘6)\ is not a Lie algebra homomorphism,
LEWA 3 P, = d'; l(P)+joVer order terms,
PROOF If X ¢ k, the previous lemma shows that x)\ = X. On the other

hand, if Y ¢ V,

d_
dt|t=0

A rather messy calculation based on the Campbell-Baker-Hausdorff

W, ) (v, k) = £(n;" (expy.k.expty))
formula shows that this may be expanded as
ACYE + 0G)) = ¢77(Y) + lover order terms.

The general case now follows. 0

In general, the terms of this series are not left invariant, even if

P ¢ Z(g), although they do share the K-invariance properties of P,

The leading term of the series, which is part of ¢;1(P) is an
exception,

LEMVA 4 (1) Suppose P e U(Q). Then ¢;1(P) e UV @ k)

(11) Suppose P ¢ 1L(g) Then the lesding term of PA belongs

te (Ve k),

PROOF (i) is clear,
(ii) results from the fact that i is an approximate
homomorphism. Thus for x ¢ V 4K and left invariant P,
_ _ -1
Lx(PAf)(y) = (Pxf)(xy) = P(f o Ry )(nk(xy))

= P(f o nii)(nl(x)nk(y)) + lower terms
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= Ln)‘(x)

=PL

P(f o nil)(nx(y)) + lower terms

-1
xx(x) (f o ) ))(nl(y)) + lower terms.

Now by the mean value theorem,

JE o oy (2)) £0 ! Oy (R, (2)))

L
xk(x

f(xz) + lower terms.

i

(f o nii) = (L) o 1 4 lower terms.

Thus Lxk(x) A

From this it follows that Lx(Plf) = Px(fo) + lower terms,

This proves that the leading term of PA is left invariant.

Similarly, if P is right invariant, so is its leading term. ]
Consider the example of the Casimir operator on SL(2,R), C = X2 +
v% - 12, This is bi-invariant. The operator ¢;1(C) on M(2) is

2,42, ,2

2 The leading term, A“(X"+Y") is a bi-invariant operator

A2y - 12,
on M(2).

The results of [1] allow us to find a solution for any bi-invariant
operator on V % K, and we are currently working on ways of finding
fundamental solutions for other operators.

However, in the case where fundamental solutions for ¢;1(P) do
exist (for example, if ¢;1(P) ig bi-invariant), we have the following
results,

PROPOSITION 5 Suppose that ¢; l(P) has a fundamental solution
Fy €® " wiK).

The formula <§A,f> = <FA’f o nA> defines a distribution

E, ¢ &,
(The proof of this propogition is similar to that of Proposition 1).
PROPOSITION 6 Suppose that there is & seguence Aj > » g0 that

(1) For all j, a fundamental solution F}\ e (V4K) exssts
h|
for ¢§1(P).
|
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o3y The segquence (E N )j defined in Proposition 5 converges
j N
in R °(G) to e distribution E.
Then E 1s a fundamental solution for P,
PROOF Omitting details of the estimates, the proof boils down to the

following simple calculation,

CPE,£> = <E, Pfy = linm <E, ey
T e Ny
= lim <F, ,(*PE) o n, >
e % j
= lim <F, ,'P, (Fox, 2
EET j
= lim <P, F, ,f o ®, >
T T N
= lim (<¢;1(P)FA',E © ry > + lower terms in Aj)
jreo j j
= lim (£(n, (&) + 0G; )
joeo j j
= f(e) ]

4. INVARIANT OPERATORS

In this section, we show how to find a fundamental solution for
operators P on G such that ¢;1(P) is bi—invafiant. In this case,
solution ;A may be ezplicitly written down for ¢;1(P), uging

essentially Hormander’'s formula, Let g = k + V be the Cartan

decomposition of g, let xl,...,xn be an orthonormal basis in V.,

2

Let P be a polynomial in X, + ... +Xn. Then ¢;1(P) is

N

P (X )), considered as an operator on V A K,

_ 2,,2
1""'Xn) = P(A (X1+...+X

I NN

A fundamental solution is then given by

A

Ay ag g LD W(Pé,&)dk(t)
(2n) \ V™ PU(§+E)

Here, ¢(v) = § ¢(v,k)dk for ¢ ¢ & (VxK) and denotes the
K

Euclidean Fourier transform in V. The Hdérmander function W(P2,°—§ )

= _ 1
<FA’¢> =

a

is
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chosen to be analytic, to have integral one, and to vanish when P;
vanishes, c.f. [12], lemma 7.3.12. 1In our case, we may also assume that
¥ is invariant under the action of K on V,

Choose a maximal abelian subalgebra & of V.,
The measure in V may be decomposed as

dv = » «a(H) dH dk

d€P+

where v = k,H, H ¢ a. After several changes of variables, and using

the K-invariance of ¢;1(P), we see that

~ A

CF., ¢y = —L ;oae s L) W(pg,u-g) X «(H)dH

odim Ty 7 Tt pAay aep,

where $(H) = f @(k.H)dk.
K

We thus have, for B8 ¢H(G),
<E,.B> = <F,, B o >

An easy calculation shows that

6 on) = AdinY S omy,

where we note that g(g) =J§ B(k,gkz)dkdk2 depends only on the "A"
K K

in the KA+K decomposition of G, and by abuse of notation we have

written B(H) = B(expH) for H ¢ g+.

Applying this to H¥rmander’s formula, we find that

~

= 1 dimv  (8) (H A
E..B> = N P T S B) W) gp? yey 7 ah)aH
A (2K)d1mv v g+C P(AH) 13 asP+
1 dima  (8) (H) A H
=Ly oge s | adima e Bey 1 agian
otinv [y % e PCH) R

A careful choice of the function ¥ enables one to see when this
limit exists: hence we can discuss solvability of these non bi-invariant

operators,
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