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SO...VABILITY OF DIFFERENTLA.L OPERA.TOP.S II; 

SBMISIMPLE LIE GROUPS 

F. lJ • .l:JAJ'J'ESTI and AJf. DOOlEY 

1 " ! NT!'Ol)\JCT I ON 

centre and P a differential operator on G. P is left invariant if 

where L denotes g 

left translation, Siul~ilarly one defines rioht invariance and 

invariance. 

Elements ]{ of the Lie algebra g act on by 

These define left invariant operators and in fact every left invariant 

operator is obt.stined by the eKtension of this map to the universrdl 

algebra u<;c), The hi-invariant operators COLTe.spond\ to 

centre Z(gr) of u<~c). 
='-' 

C>EFINITi0-1 A differenticll operator p has fundamental solution E 

E is a distribution (in :£> ' ) such that PE "' i5e. 

"' We say that p is locally solvable if PC (V) ::> for some 

neighbourhood V of the identity, and P is globally solvable if 

pc""<G) = c"'cG>, 

T/Ji ... cr .rese<''trc!J M.."iS supported .by A.RGS 

the 

H 
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2. HISTOOY 

Some of the ma.jor results concerning these concepts are as follows·. 

THEORBM {Helgason [6]) (i} l'le h6ive loc6il solv&b:il.ity for all 

p e Z(g). 

(i.f) For oil G-.invdr.iant oJ)6'rators on GIK, PC""(G/!0 = 

C., (G/K), ;.:I:Je;;1!J K denotes a maximal comp."ict subgroup of G. 

part of the complex Casimir operator belongs to Z(g) but is not 

globally solvable, 

(In fact, this operator reduces to the well-knokm example of H. Levy 

of an operator without solution.) 

This example notwithstanding, there are a number of results 

concerning the solvability of the real Casimir operator C. 

THEooa.i (Rauch and Wigner [9]) C is almys f{lobally so.lvahle. 

THEOR8\Il (Benabdallah-Rouvi€ke, Johnson) (i) If G has no 

(.fi) If G bas a discrete ser.ies, then C bas 61 f'undament.fll 

solut.ion on G" 

The paper [3] actually constructs a fundamental solution; 

Benabdallah [2] has shown that on SL(2,R), C can have no central 

fundamental solution. 

THEClAB.i (Rouviike (10]) The equ..'llity C$!' = ll ' holds if 

G = SL(2,R) or SL(2,C) but fails if real ranlr G > 1. 

As to other invariant operators, we have 

THEOREM (Cerezo-Rouvi~re [4]) If G is complex &nd p is a 

polynomial t.hen 

solvable. 
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Finally, one result on general operators. Recall the Harish-Chandra 

isomorphism for a Carlan subgroup H of G. This provides a map rH 

(where the image is the Weyl group invariant elements of 

the symmetric algebra of ~c·) 

THEOREM (Benabdallah-Rouvi~re [3]). Suppo...:re P £ Z(g) cmd suppo..qe 

there is 8 8-staiJJe Carton sui;q.roup H of G such tiJcJt riP) 

bas 8 fundtJmental solution on H. J'ben P has a centr&l 
00 

fundl:lmentaJ soJutl'on on G, tmd PC (G) 

This result allows one to give a sufficient condition for 

solvability in terms of the Cerezo and Rouviere necessary and sufficient 

condition for solvability on H, However, considering the example of the 

Casimir on SL(2,R), the existence of a central fundamental solution 

seems a rather special property. 

In conclusion, we should like to mention some recent work of 

Rouviere [11] and G. Lion [8] where conditions for existence of solutions 

on symmetric spaces are considered in a rather general setting. 

3 • GACUP <:X:h'TRACT I a-IS 

Our program for studying solvability of differential operators on G 

is based on the use of group contractions to transfer the operators to 

the Carlan motion group V ~ K associated to G. Then the results of 

[1] can be applied. This general approach has something in common with 

§6 of [11]. where the passage between the symmetric spaces G/K and 

(V ~ K)/K is considered. 

Choosing a maximal compact subgroup K of G one may write 

g = k + p, where p is a vector space complement for k. Letting V 
= = = = 

be p considered as a vector group, we take the semidirect product 
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V ~ K relative to the adjoint representation. This is the associated 

Cartan motion group. (If G = SL(2~R) then V ~ K is the Euclidean 

The contraction maps 

approximate homomorphisms in the sense that 

-1 
as 

The~:>e maps have been used, for example in [5] to transfer harmonic 

analysis from G to V ~K. We shall use them to transfer differential 

operators. 

DEF!N!TijON Let P be an element of U(g), Define P:\, a linear 

operator on C~(V ~ K), by 

(PAf) P(f o -l) o 

We have 

Pfl()p()61TION (i) Suppose P:\ has a fundamental solut.ion E" 

I 
and define F" <: :0 (G) .by 

<FA,f> = <EA,f o nA> 

Then F :\ L<:: a fundamental solution for P. 

(ii) Suppose P has a fundamental solution F, Then 

E/c f: .:t;l' (V >t1 K). defined .by 

<E;~_,g> 

is a Iundamental solutJ·on for P:\, 

PROOF One calculates that for f <: jJ (G) 

<PFA,f> = <FA,~f> = <EA,(tPf) o nA>. 

Now t t t ( Pf) o nA = ( P)A(f o ~A)= (PA)(f o nA), 

Thus 

If E:\ is a fundamental solution for PA, then the right hand side is 

f(nA(e)) = f(e), and so FA is a fundamental solution for P. If, on 
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the other hand, F is fundamental solution for P then the same 

calculation gi•1es, for g £: , (V ><! K), 

g(e) 

The hard work in the proof involves showing in (i) that F.;~. e?tJ '(G) 

and in (ii), that 

This proposition allows us to pass between G and V ~ K for each 

fixed 'A. However, it is not very satisfactory since even if P is a 

hi-invariant operator on G, will usually not even be left invariant 

on V ~ K. Thus, there is no good method for finding a fundament.al 

solution for PA. In fact, using the computer pa1cKcage MACSYMA, an 

explicit expr-ession has been calculated for C)., tJhere C is the 

Cas.imir operator on SL(2 ,ifD" This expression c:urrently runs to around 

sixty pages of comput.er printout and is apparently not left invariant. 

The problem occurs with differentiations in the V direction. For K-

directions, things worl~~: out nicely. 

LBVI#. 2 Suppose thcJt P is .left (resp. riq!Jt) 1<-inva.r.ient on 

G. Then P :>. .is left (resp, riqht) K -invariant on V >a K, 

PROOF Let 

and 

£ K. Then 

v 
koR;.(v,k) = k0 exPi,k 

R), <v.k>.k0 

ko·" 
ex~.k0k = ~Acco Hv ,k)) 

= nA((v.k)(O,k0)). 

These facts, combined with the definition of PA. prove the lemma.~ 

The fact that nA is not a homomorphism is, of course, the reason 

for this failure to preserve invariance of the operator. Nevertheless, 

xA is an approximate homomorphism and, relying on this fact, one may 

expand P, in a power series in A. It is of interest to identify the 
" 
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dominant term in such an expansion. The derivative of the map xA is 

the map 

~A : V e! ~ ~ : Y +X~ tv +X, Y £ V, X £ !· 
This map extends to a linear map, also denoted ~A: U(Vek) ~ U(g). Note 

that ~A is not a Lie algebra homomorphism. 
-1 

LEMoN>. 3 P A = ~A (P) +lover order terms. 

= = 

PA:XF If X £ ~· the previous lenuna shows that XA. = X. On the other 

hand, if Y £ V, 

d -1 v 
(YAf)(v,k) = dtlt=O f(xA (exPi,k.exptY)) 

A rather messy calculation based on the Campbell-Baker-Hausdorff 

formula shows that this may be expanded as 

1 -1 A(Yf + O('i)) = cpA (Y) + lower order terms. 

The general case now follows. 0 

In general, the terms of this series are not left invariant, even if 

P £ Z(g), although they do share the K-invariance properties of P. 
= 

The leading term of the series, which is part of ~~1 (P) is an 

exception. 

LEMoN>. 4 (i) Suppose P £ U(g), Then ~ -l(p) e U(V e k) 
A. = 

(.fi) Suppose P £ Z(g) Then the le.!id.ii1!T term of PA .belOJ7!TS 

to Z(V e k). · 

PROOF (i) is clear. 

(ii) results from the fact that xA is an approximate 

homomorphism. Thus for x £ V ~K and left invariant P, 
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-1 
= LxA(x) P(f o xA )(xA(y)) +lower terms 

-1 
= P LxA(x) Cf o xA ))(xA(y)) +lower terms. 

Now by the mean value theorem, 

-1 -1 LX (x)(f o XA )(XA(z)) = f(xA (xA(x)xA(z))) 
A 

= f(xz) + lower terms. 

-1 -1 
Thus LxA(x)(f o xA) = (Lxf) o xA +lower terms. 

From this it follows that Lx(PAf) = PA(Lxf) +lower terms. 

This proves that the leading term of PA is left invariant. 

Similarly, if P is right invariant, so is its leading term. 0 

Consider the example of the casimir operator on SL(2,R), c = x2 + 

Y2 - T2• This is hi-invariant. The operator 4>~1 C.c) on. H(2) is 

A2cx2+Y2> - T2• The leading term, A2CX2+Y2> is a hi-invariant operator 

on H(2). 

The results of (1] allow us to find a solution for any hi-invariant 

operator on V l4 K, and we are currently working on ways of finding 

fundamental solutions for other operators. 
-1 However, in the case where fundamental solutions for 4>A (P) do 

exist (for example, if 4>~1 CP) is hi-invariant), we have the following 

results. 
-1 

PR:POSITICN 5 Suppose t/Mt 4>A. (P) IMs a fundmnental solution 

FA eSJ '(V>fK). 

r/Je formula <EA.,f> = <FA.,f o '\> defines a dLqtri.bution 

EA e ~'(G), 

(The proof of this proposition is similar to that of Proposition 1), 

PR:POSITICN 6 Suppose t/Mt there is a sequence X. ~ .. so t!Mt 
J 

{.i) For all j, a fundmnental solution FA.. ejl '(Vl4K) exists 
J 

-1 
for 4>A.. (P). 

J 
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(li) The sequence (E ) defined in .Propos.iticm .'i convezyes 
J\j j 

.in ~'(G) to & d.ist.r.ihution E. 

Then E .is & fund6!Alent&J solution for P, 

PROOF Omitting details of the estimates, the proof boils do~~ to the 

following simple calculation. 

(PE,f) 
t -

= <E, Pf) = lim 
j+» 

lim <F1,., (~f) 
j+» J 

= lim 
j+» 

lim 
j+» 

lim 
j-

f(e) 

<P;~..F>... ,f o .!tA.) 
J ) J 
-1 -

<<~A (P)FX.'f on>...> 
) J 

(f(nA.. (e)) ~- o<f, n 
J J 

4. INVARI.t>NT OPERATORS 

+ lower terms in 

In this section, we show how to find a fundamental solution for 

operators P -1 on G such that ~A (P) is hi-invariant. In this case, a 

may be explicitly written down for ~~1 CP), using 

essentially Hormander's formula. Let g ~ k + V be the Cartan 

decomposition of g, let x1'''' 

Let P be a polynomial in xi + 

X 2 2 2 P (X1, •.. ,Xn) = P(A. CX1+ ... +Xn)), 

= = 
be an orthonormal basis in V. 

2 -1 
+ Xn. Then ~A (P) is 

considered as an operator on V ~ K. 

A fundamental solution FA is then given by 

Here, 

<F, ,¢;) = - 1"-d-.-11 f d~ f (ij>) (-f-1:;) 'l'(PA ,l,;)dA.(I,;) 
A <2n) 1m v vc Px(s+t> ~ 

<J.(v) = f ¢(v ,k)dk for t/> £ :lJ (Vl<i!O and 
K 

denotes the 

Euclidean Fourier transform in V. The Hormander function is 
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chosen to be analytic, to have integral one, and to vanish when P~ 

vanishes, c.f. [12], lemma 7.3.12. In our case, we may also assume that 

t is invariant under the action of K on V. 

Choose a maximal abelian subalgebra ~ of V, 

The measure in V may be decomposed as 

dv = it a(H) dH dk 
atP+ 

~here v = k.H, H £ a. After several changes of variables. and usirq 

the K-invariance of 

(F,,~> = _1 ___ d' V f 
" (2x) lm V 

where if>(H) = f tfr(k,H)dk. 
k 

we see that 

We thus have, for S £J0(G), 

<EA,B> = <FA, 8 o nA> 

An easy calculation shows that 

where we note that {J(g) = f J 8(k,gk2)dkdk2 depends only on the "'A" 
K K 

in the KA+K decomposition of G, and by abuse of notation we have 

written 8(H) = 8(expH) + for H t ~ , 

Applying this to H~rmander's formula, we find that 

<E;.,B> 1 
f d~ J A.dimV Hn ~H~ A. a(H)dH 

= ( 2x)dimV +C PCAH) HP~,H-0 It 

v ~ atP+ 

= _1_ f d~ J A.di~ (~~ ~H) A H a(H)dH 
(2x)dimV +C P(H) t(P~ ·):'-0 J{ 

v ~ atP+ 

A careful choice of the function '¥ enables one to see when this 

limit exists; hence we can discuss solvability of these non hi-invariant 

operators. 
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