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CLIFFORD MATRICES, CAUCHY KOWALEWSKI EXTENSIONS AND
ANALYTIC FUNCTIONALS

John Ryan

INTRODUCTION

Our aim is to first use classical,‘and Clifford, analysis to characterize the dual
space of the space of analytic functions on the unit sphere in R™ . Our characteriza-
tion is given by an infinite set of vector spaces of functions defined on the complement
of the sphere. Each space comprises of solutions to a fixed order iterate of the Eu-
clidean Dirac operator. The first of these representation spaces has previously been

obtained by Sommen [13].

We then examine the Cauchy-Kowalewski extensions of the analytic functions
on the unit sphere in more detail. We use Huygens principle to show that these exten-
sions are determined by the holomorphic extensions of these functions within the com-
plex sphere. This enables us to give a characterization of the space of analytic func-
tionals over the unit sphere, as the completion of a union of subspaces of holomorphic
functionals acting over a system of domains of holomorphy lying the complex sphere,
and containing the sphere. These domains of holomorphy comrespond to ones

described by Morimoto in [8].
CLIFFORD ANALYSIS REVISITED

In this section we give, for completeness, a reintroduction to some basic results

from Clifford analysis that we require here.
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Suppose that h:U, — € is a harmonic function, where U, is a domain in €.

Then, trivially, we have

d 9 _ _
> a—z_h(z)(— Ah(z)) =0,

and the operators -a%- and —aa: couple to give a linear decomposition of the two dimen-
Z

sional Laplacian A,. We could like a similar decomposition for the Laplacian A, 4
over R™*1, where n > 1. In this case we require first order, homogeneous operators 9,
and 9, such that 8,5, = A, ,;. This requirement is essentially the same as asking for

R™! to be included in some algebra A, such that for each x € R"*! we have

x ¥=1 x 12, where ¥ is also in R™*!, Placing x = x,e, +x1e;+ - - - +Xx,e, and
X =x,6, ~X1€1~ *°° —X,€, we arrive at the anticommutation relationship
e‘-ej + ejei == 28"‘,'80

for 1<i,j <n. This anticommutation relationship over the elements e, - -, e,

gives the necessary information for generating the 2" dimensional, real, Clifford alge-

bra A, with basis elements €5, €1, " " "5 €5, €1 €2, " " ", €418y, " " " €
where j, < --- <j,, and 1<r <n. It should be noted that other algebras, includ-

ing non-associative algebras like the octonion algebra O or O @ O, also have ele-

ments which satisfy (1). However, we shall stick to using the algebra A,. In this

n
context the generalized Cauchy-Riemann operator is —— + 3’ ¢; i(= 9;).
ox, =1 ' ox;

DEFINITION: A function f :U,, — A, , with U,,, a domain in R™}, is

called a left regular function (or monogenic function) if d, f (x) =0 forall x e U.

A similar definition may be given for right regular functions.

]1...jf'..’e1"‘
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The study of left (or right) regular functions has been developed by a number
of authors (eg [2,4,6,7,9,11,15]) and it is referred to as Clifford analysis.

Examples (A) Suppose that h : U,,; — R is a harmonic function. Then

gradh(x) = 9, h@) =5 f; ¢; ah(zf)
)

is both a left and right regular function. As a particular example we have

hx)=H@)=@-11x 17, then grad H(x) = G;(x) =X Ix ™1,

(Note that as each element x € R™1\ {0} has an inverse

xY=x1x172), e R\ {0}, then G(x)=x"tix 1),

(B) Suppose that U, is a domain lying in R", the subspace of R™*! spanned
by the vectors ey, ' - -, €,. Suppose also that g : U, — A, is a real analytic func-
tion (i.e. about each point in U the function g has an infinite Taylor expansion
which converges uniformly to g). Then [2,6,7] there exists a domain U, , < R

which contain U,, and the function

Frg Ung = An < f1400= €D

is a well defined left regular function, where X =xe;+---+x,e, and

=3
=3 ¢
=1 ax,

-)

The function f,(x) is called the Cauchy-Kowalewski extension of g with respect to
the Euclidean Dirac operator 9,. It has previously been shown [2] that this extension

is unique.

It is important to note that if g; and g, are real analytic functions defined on

=U

U, then it is not generally the case that U, ng:

ngr = For example consider
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g1(x) = 1+1x1? and g ix) = g7

We also have the following generalizations of Cauchy’s theorem and Cauchy’s

integral formula:

THEOREM Suppose that f :U,,4 = A, is a left regular function, and

o
M c U is a compact , (n+1)- dimensional manifold withx, € M . Then

[Dxf@x)=0
oM

and

- _
f)= o aLG‘(X x,)Dx f(x) ,

n .
where Dx = Y (-1Y ¢;d%;, and @, is the surface area of the unit sphere in R"*!, @
i=0

Using formula (2) we may deduce the conformal invariance of the solution
spaces to the generalized Cauchy Riemann operator introduced here. First we note

that for each vector x; € S* we have from (1) that x; R**'x; =R"™! and

lxyyxql =1yl for each y e R™!. By induction we have that for each
Xy,',X% € S* thena R"*'a =R™! and lay @l =1yl foreach y € R™,
where a=x, "X and a=xy " -xP. The group
Spin(n) = {x € A, :x =x;---x, with x;,---,x, € §* and p { are non fixed

positive integer} is a double covering group of the special orthogonal group S0(n+1),

and it is isomorphic to the group Spin(n+1) described in [10] and elsewhere.

Suppose now that the function f is left regular with respect to the variable
a x @ then from (2) we have that the differential form Da x @ f (h x @) is closed.
This gives us that the form a Dx @ f(a x a) is closed. Consequently the function

a f(a x @) is left regular with respect to the variable x. Similarly it may be
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deduced that if f is left regular w1th respect to the variable x~! then G(x) f(x7})
is left regular with respect to the variable x. As 9, is a constant coefficient
differential operator then its solution spaces remain invariant under translation and
dilation. Consequently, the Euclidean Dirac operator’s solution spaces remain invari-
ant under actions of the Mobius group in Ry {ee}. In [1] Ahlfors shows that any
Mobius transform in R”*! may be written in the form (ax+b)(cx+d)™)) where
a=ay - @ ,b=by - by,,c=cy" " ¢,,d=d," 4y, with

a,,bj,c;;, and d;eR™ and 1<j<p, ke {1234}, and

. - ab
at ,éd ,db ,ba € R™' and ad -bé € R\ {0}). The set of matrices G 2
satisfying the previous conditions form a group AV (R"*!) and the quotient group
AV(R™!)/R* is a four fold covering group of the group of Mobius transforms in

R™1 U {0} when n is odd, and it is a two fold covering otherwise. In [11] we

show that:

THEOREM Suppose that f ((ax+b)(cx+d)™Y) is a left regular function with respect
to the variable ((ax+b)(cx+d)™), then the function Jy(cx+d)f ((ax+b)(cx+d)™Y) is

left regular with respect to the variable x , where J(cx+d) = (cX+d)lcx+d) [a+l @

This result is in complete analogy with the quaternionic result deduced by Sud-

bery in [15], and for the Minkowskian Dirac opérator (see for example [5])).

As (cn+d)cn+d) € R*, where ¢ - - ¢, =(-D' - - ¢;, then, when
defined, J,(cx+d) is invertible in A,. Using the Cayley map (x—e,)(x+e, ), and
(x+e, ) (x—e, )1, it now follows {11] that each analytic function g : S — A, has a
Cauchy-Kowalewski extension to a left regular function f g iUy = A,, where U,
is some neighborhood of S”. This extension has previously been deduced by Som-

men [13] using different techniques.

We denote the space of A, valued analytic functions on the - sphere by
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A(S™, A,;) and we denote the space of functionals T,0 : A(S", A,) = A, such that
() TG, )Hh(x,)a) =T(gx,)+T(h(x,)a where g(x,)h(x,)e AS™, A,) and

acA,.
@) I1T@EE)I <Cr sup lg(x,)! for some Crpe R
xe8*®

@) GTH)gkx,) =b(T)gx,)) + Q@ (x,)) , where be A, ,
by A’(S™, A,). This space is the dual space of A(S", A,).

THEOREM Suppose that T € A'(S®,A,) and g € A(S",A,). Then

T(g(x,))=T —51— [ -] Gix—=x,)Dx £ (x) =?51— | T(Gx—x,)Dx f,(x)

(3 S‘l(‘) S,z(‘) o s‘l“)
1
—— j T (G (x—x,)Dxf4(x) ,
©n Sege0

where f,(x) is the Cauchy Kowalewski extension of
8 + SR,g) is the sphere of radius R,(g)>1 and Sg,,) is the sphere of radius

Ry < 1. Moreover, Sp ), Spye)S Ug-

COROLLARY TG(x-x,) is a right regular function defined on

R™I\S™ . Moreover , LmTG(x—x,)=0 and Hm Ix I*TG (x-x,) =0
x—e0 X oo

for ke (O,n). B

We denote the left A, module of right regular functions f defined on
Upyer = {x€R™! 1 Ix1 > 1}, and such that Lim Ix 1¥f(x)=0 for ke[O,n), by
X —po0

M youer (A,). We denote the left A, module for right regular functions f defined on

the interior of the unit disc by M ., (4,)-
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THEOREM The left module A’(S,, A,) is isomorphic to the left module
M iouter (An) @ M 1inner (Ap)- u

01
Using the Clifford matix (; o) € AV(R™!) we have, on endowing

M e (A,) and My, (A,) with the Frechet topology obtained by taking
supremums over nested sequences of compact subsets of the open disc, and the com-

plement of its closure on R**1.

THEOREM  The left A, — Fréchet modules M, (A,) ad M. (A,)

are topologically isomorphic. =

THE MODULE A‘(S",A,): We started by considering harmonic functions. We
shall now briefly return to this theme. All of the results described in the previous sec-
tion generalize to this setting. First suppose that g : U,—A4, is an analytic function.
Then the function

77t . - & 2n AR
ng'Un.g_')An°f2,g(x)—n§o (zn)!xo g®

is well defined on some domain U, g of R™*!, containing U,, and it is a harmonic
function. The function f,, is a Cauchy Kowalewski extension of g with respect to

the Laplacian in R™*!. However, it is not the only Cauchy Kowalewski extension of
g with respect to the Laplacian in R™*!. The function % Fig t —;— fag defined on
Upog N U, 2 is also a Cauchy-Kowalewski extension of g with respect to the Lapla-

cian on R™*1

Also, if the function A is harmonic with respect to the variable (ax+b )(cx+d )™

then the function J,((cx+d)h((ax+b)(cx+d YY) is harmonic with respect to the vari-

1 -1
able n, where Jy(cx+d) = lcx+d |n+l Using the Clifford matrices (1 1) and
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11
(l _1) we now have that each g(x) e A(S", A,) has infinitely many Cauchy

. . . . % & . .
Kowalewski extensions to harmonic functions 4 ° : U, > A, where U, isa domain

in R"+l.
Following [12] we now have:

THEOREM (i) Suppose that f :U,,  — A, is a left regular function. Then
Ix 12 f(x) is annihilated by the operator AP,10, where p e N.
(ii) Suppose that h :U,, — A, is a harmonic function. Then

|x 1% h(x) is annihilated by the operator AP, ;. B

As, by definition, Ix| =1 on the unit sphere we now have:

COROLLARY Suppose that g(x) e A(S", A,) then there is a domain ljg in

R™! which g has a Cauchy Kowalewski - extension f q.g°  Where
qgef{l,---,p,- -}, and f,, is  annihilated by the  operator
A% if q is even,and by Al 3, otherwise. &

We also have [12] the Cauchy integral formulae:

THEOREM Suppose that [ :U,,; — A, satisfies the equation AZ,.d,f (x) =0,

then for each compact, real, (n+l) - dimensional manifold M lying in U,

o
and each x, € M we have

fx )='wl‘aj iA 241G 241005 )0 AL f QA (Kk g 1A 249G 9k 100 %, )Dx AF 18, £ (1 )\y(k q),
n 3ME=0

where A] =1 , A2k+l ,Au,‘,z € R N ax AuHGu”(x) =A2kG2k(x),

9, A2 2k 20) = Ay 1G 1) Ak @) =1 if Kk <q andis equal to zero
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otherwise, and My(k,g) =1 if k < q-1 and is equal to zero otherwise.

If f(x) satisfies the equation Af,,f (x) =0, then

F @)= [ EhAnnCaaGrDxakf @hitk.a)
o oM k=0

+A 93126 2 4203, )Dx Ak 13, f (K 9),

where Wy(k,g)=1 for k <q-2 and is equal to zero otherwise. &

Explicitly we have in the above integral formulae that

) . U Ji]
(i) when n iseven Gj(X):Gl(x)(xf)[l'zlx 2 2

1 4
(i) when n is 0odd G;(x)=G(x)(x-X) [%pc[ﬁ for je(l,---,n)

and Gix)=p(n )(9j+loglx ) for j2n+h where GjeR and

421 [12_1"%1]
pjx)=0x) % x
Combining this theorem with the previous corollary and evaluating the Cauchy

integral over Sp () U Sp,(g) We obtain:

THEOREM Suppose that T € A'(S",A,,) andg € A(S™, A,). Then

' 1 ¢ 2 Ak,
T@ ) | TAuaTGonx=x0Dx Ak Sy g
nS,l(,, k=0

+A21.40T (G 2 428 =%, DDX AF 110 o o X IAy(k q)

1 e
~— [ T AnaT (G x5, 0Dx Ak, g 4 OM(k.q)
On Sp4) k=0

+A 22.49T (G 2420t =%, )DX Ayt 13, f g g O (K 0)

if g is odd, and it is equal to
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. 3 AgearT (G o1 (=2, DDx Af 41 f 4 o Ry (K q)
@, Sz ) k=0

+A 21427 (G ok 428 =2, )Dx A 1180 f ¢ o COM1 (K 0)
L [ S AT G (=2, DDx A1 f 4 Oy o2)
On Sp k=0
+A 91127 G o 190~ DX A 13, f g o G K0)

otherwise . =

COROLLARY TG, (x—x,) is a well defined analytic function on
R™!\S™ and when q=2p we have that
ANPTG,(x~x,) =0, and when q =op+l we have that A,9,TG,(x-x,) =0.

Moreover, when n is even lim lxlk’TGq(x-xo)=0 for gefl,---,n}
X —poo )
and kqe[O,n+l—q) and limlxl"'TGq(x-—xo)=O for g>n and kqe(q-n—l,+o°).
X —oo .

Whenln is odd lim lxlk’Gq(x—xo)=O for ge{1,.,n} and kge[0,n+1-q) .
X =00

When n is even we denote the left A, module of functions f (x) defined on
U, uer» satisfying A,I,+laxf(x) =0, and with lim Ix Ik’f(x)=0 for >qe {1,---,n}
X —o0
and k,e[0,n+1-gq), or with lim Ix l—k'f(x)=0 for g>n and kj e(g-n-1,+°), by
X o0

Moy i1 ower (Ay), where g=2/+1. From the above corollary a similar definition may

be given for My ;. (A,).

We denote the left A, module of functions f (x) defined on the interior of the
unit disc, and satisfying A!,,9,f (x)=0 by M 2+1,inner (Ay), and the left A, module

of functions defined on the interior of the unit disc, and satisfying Al,,f (x)=0 by
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M 2 inner (Au )
We now have:

THEOREM + When n is even the left A, module
My puter (Ap) @ My jnner (A,) projects onto the left
A, module A'(S,,A,) for k=12,---

From [12] we have that if f(x~!) satisfies the equation A,’,+Lf c"H=0 with
respect to the variable then x(xJ'c')' e 1 (x )"1 is annihilated by the operator A,’,H,

with respect to the variable x, and if f (1) satisfies the equation A,',Ha,-, faH=0
then Al 9, () G, (x)f (x"1)=0.

From this and the previous theorem we have:

THEOREM When n is even the left A, module My 4., (A,) is conformally iso-
morphic 1o the left A, module M, ;,,,,(A,), for k=12---. &

By taking the supremum of each f (x)e M oy, (A,) over a suitable nested

sequence of compact sets, on U, U{=} we may deduce:

THEOREM Wphen n is even the left A, Fréchet module My, oy, (A,) is topologi-
cally isomorphic to the left A, Fréchet module My inner (Ag) via the conformal iso-{

- B
morphism, for ke(l,---,n).

By taking the supremum of Ix177f(x), for f(x)eM, ;. (A,), over the
same sequence of compact sets, and taking the supremum of g (x)e My inner (A,) We

have induced Fréchet topologies on these modules for g2n+1.

THEOREM When n is even and q2n+1 the left A, Frethct module My puer (Ay)
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is sopologically isomorphic to the left A, Fréchet module My inner (An) via the con-

Sformal isomorphism.

When n is odd we denote the left A, module of functions, f (x), defined on
Uau:erf satiSfying Ar':+lanf(x)=0» with lim lx lk'f(x)=0 for qe{l, c--,n} and
X —po0

k,el0n+1-g), by My, ouyer (A,), where 2[+1=g. A similar definition may be
given for My, 40, (A,), with 2le {1, -, n}.

From the previous arguments we now have:

THEOREM Suppose that n is odd and that the ke(l,---,n) then the lefs A,
module My ey (Ay) @ My imer (An)  projects onto the lefi A, module A'(S™, A,).
Moreover, M gy (Ay) is conformally isomorphic 10 M jnn., (A,) and this isomor-

phism is a tapological isomorphism with respect 1o the Freche: topologies. B
/ f

When n and k are odd and k2n+1 we denote the left A, module of func-
tions, f(x), defined on U,,, satisfying A%?9,f(x)=0 and with

k—n .
A,,fl_ F)EMy puier (Ap), bY My o, (Ay). A similar definition may be given for

My, puer (A,) when n is odd and k is even, with k2n+1.

When » is odd and k2n+1 it is no longer the case that M, ;,,,, (A,) is con-
formally  isomorphic’ to M 4., (4,). For  example, the function
loglx—11e M, ouer (A,). Moreover, as M;,,, is contractable to a point the holo-
morphic continuations of each member of M; ;,,,, (4,) to the L i.. ball lying in C™*!
are unique. Consequently, the holomorphic continuations of the conformal image of
each element of M, ;.. (A,) under inversions, is uniquely defined in a domain in

C™*1, However, log Ix—11 does not have a unique holomorphic continuation to this
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domain.
However, it is straightforward to see: that

THEOREM Suppose that n is odd, then the left
A, module My puer(Ay) @ My juner(A,) projects onto the left A, module
A'(S™, Ay). "

Putting together the previous results we obtain the following infinite sequence

of A, left modules which project onto A'(S™, A,

2 : 2. .
c D Mg ouer (A) @ Moy inner (An) =M gy purer (An) @ Mgy ey (Au)s" e

b

A'(S™, A,) : A'(S™, A) .

In this last part we replace the A, modules by A,(C) modules, where A,(C)

is the complex Clifford algebra over ¢".

By replacing the Cayley transform (1-x)(x +1)! by (1-z)(z+1)™!  where
ze ¢\ {ze €™ : (z+1)(Z+1) =0}, and by replacing the transform x+Dx-1)"!
by (z+1)(z-1)"! we may now easily extend our previous arguments to obtain the fol-

lowing generalization of a result appearing in [11]:

.

THEOREM For U a domain lying in = the complex
n— dimensional manifold S¢ ={z:2z=1}, and f :U ‘—A,(€) a holomorphic
Sfunction there exists a domain Ujf c@* with U'c Uff and Cauchy-Kowalewski
extensions f : U—A, (@) such that Ag .19, f2.1() =0 and

Z .

L e R IS
Agf () =0 , where A(,',,,,I-Jé)azj2 and BT—ZCJE—J— . B

J—.
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If we now take an element aeA(S", A,) then this element may be extended
to some holomorphic function 4 defined over a domain of holomorphy U, lying in

the complex sphere Sg.

Suppose now that xeR”*!\ {0} then we denote the real, n -dimensional space

orthogonal to x by R};, and we denote the hyperbolic sphere {yeAx+iR7; : yy=1
and AeR)} by SP. For xeS" and AeR \ {-1,0,1} the set N(Ax) NS} is the

(1+x2)x N ;(1-).2)

22 22
where N(Ax) = {ze €™ : (z-hx)(z—Ax) = 0).

(n-1)- dimensional sphere { ®: xO+HX=0 and meS"}.

Using the Huygens principle described for the wave equation by Garabedian in
[3, Chapter 6] and for the Dirac equation in by Soucek in [14] we now have from the

previous theorem:

THEOREM Suppose that n is odd and acA(S", A,) then Axe U" for xeS" and

2 92 i
“;i’)x +i“2i‘)m:xw=o and weS"}CU,. s

AeR \ (-1,0,1} if {
Using the integral formulae described for the wave equation in odd dimensions
in [3, Chapter 6] we also have:

THEOREM g,/ 55e that n is even and acA(S", A,). Suppose also that for neS"

and Ae(-10,1) we have that

23 2\

of areal n dimensional manifold lying in S¢. Then AeU;.

{(1+x2)x S i mrar=0 and wes"}s U, and this set is the boundary
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Suppose now that U " is a domain of holomorphy lying in the complex sphere
and O(U’, A,(@)) denotes the right module of A,(C) valued holomorphic functions
defined over U'. Then O(U’, A,(C)) denotes its right A,(€) dual module.

From the previous results we now have:

THEOREM Suppose that TeA'(S", A,) and S" c Q. Suppose that
(TG 1(x=x,))EM | puer (Ay) and TG ((x—=X,)E M | jpner (A,) have holomorphic exten-
sions to U . Then for each feOU’, A,(€)) we have

T()=-1 [ 16,62 D21 - = [ TG @2,)Dzf,@,
Wn g(se @) ©n 0(S 4o)
where 6e0(C™) = {(a;;) : 151,j<n+1 , g;€C and {(a.-j)@j)T = (a;)},

n . ’
R 1(9)& (l,'*'°°), R2(9)e (0,1) ,Dz= Ze](—l)’df] and O(Sklm) , € (ste)) c Ug.
j=0

The set of all elements in A'(S”, A,) which satisfy the conditions given in the
previous theorem is a proper submodule of A'(S™, A,). We denote this submodule by
Ay (S™, A,).

Suppose that TeA'(S",A,) and ecither T(G,(x-x,))eM |y, (A,) or
T(G(x-x,))e M | jnn., (A,) cannot be analytically continued onto S". The set of all
such functionals is a proper submodule of A'(S™, A,), and is denoted by

AgingutarS™, Ap).
Trivially we have the following characterization of A'(S", A,):

PROPOSITION Suppose that (U,,',] is a system of domains of holomorphy lying in
SE  with kZJU,;, =S2 and QU,; =$", and d(U,,)&€U,, for m<m,. Then

A" A= O ALS", AV Agingutar (S Ap).
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