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THE MOTION OF MEMBRANES IN SPACE-TIME 

R.W. TUCKERt 

ABSTRACT 

The equation of a hypersurface interacting with external fields in space-time is 

established. A class of models is based on the properties of a symmetric divergence-free 

distribution-valued stress tensor for the interacting system. The elastodynamic properties 

are encoded into the induced metric and shape tensor of the immersion together with 

invariants constructed from the Weingarten map. Two particular examples are discussed 

that are relevant to recent developments in the theories of relativistic extended particles. 

Introduction 

The simplest matter models that enter into the description of standard cosmological 

space-times are given in tenns of a unit time-like future pointing vector field V and 

scalars p and p that define the matter stress tensor 

t "" (p + p? ) v ® v + ~. g 
c~ ~ 

(1) 

It is well known that for a gas of collisionless dust (p=O) the condition that T be divergence free 

implies that V must be a geodesic vector field. Thus the integral curves of V extremalise the 

integral of arc length and are models for the world lines of point particles. Recent activity 

has focussed attention on models for extended particles; either as basic entities for 

hypothetical unified models [1] or as alternative matter models. Particular attention has been 

devoted to 2 and 3 dimensional immersions in a (pseudo-) Riemannian manifold. In their 

simplest fonn such immersions have vanishing mean curvature. Their ("superspace") 

extensiomJ2l offer plausable avenues towards a unification programme. Other 

investigations have begun to study particular extrinsic geometrical properties of immersions 

as well as their gravitational and electrmnagnetic interactions. 

In [3] simple models of extended matter that provide a foliation of space-time were 

studied in the context of Einstein's equations. It is of interest, however, to derive the 

equation of motion of a single immersion without necessarily expecting it to be the leaf of 

any particular foliation. 
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In [ 4] we studied a model for a "charged bubble" that generalised an earlier model 

discussed by Dirac£5) to describe the muon as an extended particle. In this note a general 

class of distribution-valued stress tensors will be presented and these models will be 

recovered as special cases. 

We are interested here in the equations of motion of hypersurfaces in space-time that 

have a Lorentzian induced metric, interacting with prescribed external fields. 

I. Discontinuities in the stress tensor 

Suppose C: D-) M is a time-like 3-dimensional immersion into space-time, D being 

some 3-dimensional parameter domain. Denote by h the shape tensor of the image L of C 

and TINg its induced metric. We shall suppose that locally the hypersurface is given by the 

equation <P = 0 and that I and II label the disjoint regions of space-time given by <P > 0 and 

<P < 0 respectively. In terms of <P the unit normal to a regular hypersurface is given by 

N = d<P I I d<P I where I I denotes the norm with respect to g.ln the following, a tilda over a 

tensor will denote the tensor associated to it by the space-time metric g. Let Y «<>be the 

Heaviside function on M with support on <P > 0. Introduce further, the distribution B«l> by 

the relation 

(2) 

and suppose that the total (2,0) symmetric stress tensor (including all matter and fields) takes 

the form 
(3) 

where the coefficients ofY and Bel> are smooth tensors. Tm will describe the stress properties 

of the immersion. Now for any scalar (3 on M we have: 

V· (~T) = T(d~.-) + ~V· T 

Thus Tis divergence free if V:fll = 0 in I, V·Tn = 0 in II and 

rfl (dci>,-) =- v. Till I r 

Tlll(dci>,-) lr=O 

(4) 

(5) 

(6) 

where ['I]= T1- Tn denotes the discontinuity ofT across <P = 0. Since d<P is space-like~ay 

interpret (5) as saying that the jump in the local momentum current 1-form [Jdlll =- [T(d<l>,-)] 

gives the normal force on the hypersurface. (In terms of any time-like observer with unit 

vector V tangent to his world line, iv * J is the local force 2-form associated with any 

momentum current 1-form J, *being the Hodge map assoicated with g). 
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Now for any (in general mixed) tensorS we may define TINS by 

where TIN= 1- N(N) N ®Nand fiN= 1- N(N) N ® N are (1,1) projection tensors. 

TINS will be said to be orthogonal toN, or N-orthogonal. Hence (6) says that the 

hypersurface stress tensor must be orthogonal to its normal field. 

It is straightforward to project V·Tm into its normal and tangental parts with respect 

(8) 

where as usual 

(9) 

{ Xa}, { ea} being arbitrary dual bases with Xo time-like. Since IIN Tm = Tm 

But 

llN(Vll XN) =-AJllr(C) 
N 

(11) 

where AN is the Weingarten map .. In terms of the shape tensor with h = HN : 

g(h(X,Y), N) = g(AN X, Y) = H(X,Y) (12) 

Hence .......... 
N(V·Tm) =Till (ea, ANX,J =Tr(~'l) (13) 

where r is the associated 1-1 tensor. 

Thus if we write 

[JdJ =TIN [Jdrl>] + N ([Jdrl>])N (14) 

equation (5) gives as normal and tangental parts 

(15) 

and 

llN(~] =llN(V· fill) ll: (16) 

where Till= TIN Till. 
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II. Geome~ricai Elastodynamics 

We assign to the "material" hypersurface <D = 0 (with space-like d<D) the 

d<D-orthogonal symmetric tensor 

THI"" I diP I { L1(il~) + LiTINH)} (17) 

The scalars L 1 and L2 may be chosen to depend on a set of geometric invariants Kl' IS• JS• 

.1K1, .1112, AK3, ... .1 here denotes the Laplacian (with respect to llNg). The invariants Ki 

may be taken as the elementary symmetric functions of the Weingarten map eigenvalues. 

Thus if { Xd i = 0,2,3 is a local g-orthonormal basis of vector fields tangent to I such that 

i = 0,2,3 

then we define 

1(3 = 'A}c2A3 · 

We shaH consider two examples that have featured in recent investigations. 

For some constant K consider 

tm = K 1 d([> 1 TINg 

= 1( I d([> I (g - N ® N) (18) 

It follows immediately from (12) that 

NCV· TINg) = H(llNx•, nNx.) = 3 1111 (19) 

where '1 = t L h (nN x", nN x.) 
a=0,1,2 

is the mean curvature normal of the hypersurface. Thus if 1\ and Tn are zero such an 

immersion is extremal in the sense that it extremalises the induced "volume" of the 

immersion. If, however, for the parameter domain D we take the topology s2 X R (so that 

region ll is the world tube traced out by the interior of a space-like bubble) and couple this 

membrane to the Maxwell field F by taking Fn = 0 and T 1 = T Maxwell• then 

(20) 

where F1 is the external field of the charged membrane. In Minkowski space-time with pi the 

Coulomb field of a spherical bubble (in its proper frame), (15) gives us the equation of 

motion: 
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(21) 

This is the classical equation first studied by Dirac[5] in connection wiili his particle modeL 

Instead of (18) we may include the shape tensor in Tm. In particular suppose 

(22) 

H follows from the Gauss equation that V X,Y: 

where Ric is the Ricci tensor of (I1Ng, I. ) and Ric the ~icci tensor of (g, M). Hence 

N (V· Tm) = K 1 ct!l> 1 (R-

in tenus of Gaussian curvatures. lf such a membrane is electromagnetically coupled to the 

Max wen field as before we obtain the equation of motion (in Minkowski space-time): 

(25) 

It may be shown that this is the variational equation that defines an extremum of the 

integral[ 4] 

A [C]=-9K f lfll~ 1 + tJ FA *F (26) 

C M1 

where ~ 1 is the induced "volume" 3-form on I,. In Euclidean spaces such uncharged (F=O) 

membranes gives rise to Willmore immersions[6]. Such immersions have an extensive 

mathematical literature. The charged Lorentzian model above fom1s the basis of an improved 

semi-classical estimate of the electron-muon mass-ration [7]. The quantum mechanics of 

immersions with generalised stresses given classsically by (17) is an important unsolved 

problem. 
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