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Spacelike hypersurfaces play an important structural role in spacetimes, whether for 

the initial value problem (Cauchy surfaces), the structure of singularities (constant mean 

curvature surfaces), moments of time symmetry (maximal surfaces), cosmic time func­

tions (surfaces of simultaneity), or for analyses of "the topology of space" (as opposed to 

spacetime). It is generally tacitly assumed that the surfaces in question are fairly "nice": 

achronal and without self-intersection, for instance. Suppose, instead, that a "hypersur­

face" is given, not as a closed, embedded, achronal submanifold (the nicest situation) but 

as an immersed submanifold, i.e., as a differentiable map f : Mn-l ---+ vn (where Vis the 

spacetime, with metric g) whose differential kills no tangent vectors in M (but f(p) = f(q) 

is possible); this will be a spacelike "hypersurface" so long as the induced metric on M 

(J* g) is Riemannian. What can be said about this? 

In general, such a map need not be very nice, even if V is Minkowski n-space, lLn: The 

image off could easily be (for, say, n = 3) a spacelike ribbon intersecting itself or imitating 

a helical parking ramp. This is only possible, however, when f(M) has an "edge"; any of 

various edgelessness or completeness assumptions render such behaviour impossible. For 

what other ambient spacetimes, besides Minkowski space, is this true? That is the subject 

of this paper. 

How should the edgelessness off: M---+ V be phrased? One possibility would be 

simply to insist that f(M) be closed; this, however, is far from sufficient, since the edge 

from one part of the surface could be made to lie in another part of the surface, thus 

keeping the image of f closed. The strongest assumption to make is that f be a proper 

map, i.e., that for any compact subset K C V, f- 1(K) must also be compact; besides 
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forbidding anything that smacks of an edge (since we are assuming M is a manifold without 

boundary), in case f is injective, this is equivalent to saying that whenever a sequence 

{f(p;)} has f(p) as a limit in V, then {p;} hasp as a limit in M. This suggests a weaker 

assumption, more naturally adapted to questions about curves on hypersurfaces: We can 

call f curve-proper if for any continuous curve u : [0, 1) --+ M for which the curve f o u : 

[0, 1) --+ V has an endpoint q = limt--+1 fu(t), u also has an endpoint p = limt ..... 1 u(t). 

A perhaps more natural assumption is that M be complete in its induced Riemannian 

metric; this prevents the presence of an edge at a finite distance from any point in M. 

Completeness is a bit stronger than what is needed, however: We don't want to neglect, 

for example, the hypersurfaces in Minkowski space which extend out to future null infinity 

but, because they hug so close to a null cone, have finite area. We can capture such surfaces 

within our domain of discourse by requiring that f be conformally completable, i.e., that 

for some conformal factor n: V--+ JR+, M be complete in the induced. metric f*(Og). 

Since a proper map is always conformally completable, this is a weaker assumption. (In 

fact, for a Riemannian ambient space, this is weaker than curve-proper.) 

The good news is that for V being Minkowkski space, any of these assumptions is 

good enough for the desired result: Let f: Mn-1 --+ rr.,n be a spacelike immersion. Iff 

is any of 

a) conformally completable, 

b) curve-proper,or 

c) proper, 

then f is an embedding (i.e., injective and proper), and f(M) is a closed achronal set; 

furthermore, M must be diffeomorphic to JRn-1, and f is isotopic to (i.e., continuously 

deformable into) the standard inclusion JRn-1 C rr.,n. Note that this says that for the 

ambient space being rr.,n, the assumptions a), b) and c) above are all equivalent. 

For what other ambient spacetimes V is this true? It surely fails if V has a "spacelike 
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boundary", i.e., if V looks something like half of Minkowski space. For instance, if V is 

JLt = {(x,y,t) E IL3 It> 0}, then one can embed a spacelike cone into V-plus-boundary 

with the apex at the origin; deleting the singular point from the domain (whose image 

isn't in V, anyway) yields a proper spacelike immersion (actually an embedding) of lll2-

{point} into V. By similar means, one can construct a proper spacelike immersion, not 

of the cone on an embedded circle, but rather of the cone on a self-intersecting closed 

curve in V; this produces a proper spacelike immersion which is not injective and not 

achronal. Constructing a cone on a spiral (one having two circles as limit curves) pro­

duces an injective, curve-proper, and conformally completable spacelike immersion 'Nhich 

is not proper and not achronal. Similar counter-examples can be constructed in anything 

conformal to a product of the form N X (a, b) for any Riemannian manifold N, so long as 

either a or b is finite; this includes, for example, de Sitter space. The same can be done in 

maximally-extended Schwarzschild space, using the singularity. 

There is, however, a large class of spacetimes for which the desired results hold, The 

required technical property I call worldsheet homotopic normality. By a worldsheet for a 

given curve r: I----+ V (I= [0, 1]) I mean an immersion a :I X lit----+ V with (dfdt)a(s, t) 

timelike and a(-, 0) = r; call a communicative (Le., representing a communication from 

one end of rio the other and back again) if the past and future null curves in a, starting 

from (0,0), each reach t±) for some numbers L and t+ . . What is required is that V 

possess communicative worldsheets for every curve and do so in a continuous manner, with 

the worldsheets becoming degenerate (a(s, t) = a(O, t)) as the curves become degenerate 

(r(s) = More specifically, given any continuous family of curves { r" I 0 ::::; u ::::; 1) all 

emanating from the same point p and with r0 and r 1 the degenerate curves at p, then we 

shall require that there exist a continuous family of communicative worldsheets {au} for 

the { ru}, with ao and a1 each being degenerate; also, if ro is degenerate but r 1 is timelike, 

then, again, we require a family {a,.}, with ao degenerate. Any manifold V satisfying 

such properties will he called worldsheet homotopically normal, or WHN. (Actually, the 
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definition can be safely weakened by only requiring the existence of {au} for some family 

of curves {r~} with the same endpoints as the original {ru}, so long as T~ and r{ have the 

same characteristics - degeneracy and timelikeness - as To and. 1"1.) 

What this amounts to, roughly, is saying that any disk in V which is described by 

arcs emanating from a point on its boundary can be deformed into a future (or past) null 

curve. This cannot happen, for instance, in the presence of a spacelike boundary, because 

a disk which is close to the boundary will run into the boundary before the arcs making it 

up can become null. 

The good news is now almost the same as before: Suppose that yn is a strongly 

causal, WHN Lorentz manifold. Let f: Mn- 1 ---+ V be a spacelike immersion such that 

f induces a surjection f.: 1r1(M) ---+ 1r1(V) of homotopy groups. Iff is any of 

a) conformally completable, 

b) curve-proper, or 

c) proper, 

then f is a closed, achronal embedding. 

What spacetimes are WHN? Anything conformal to a product N x 111 , with N any 

Riemannian manifold, is WHN; this includes anti-de Sitter space. In such a case, we can 

also conclude that f is isotopic to the standard embedding of N into N x 111 . It is not 

hard to see that Reissner-Nordstr¢m and external Schwarzschild (r >2M) are WHN. 

Why the restriction that /. be surjective? That is to prevent the occurence of phe­

nomena such as the mapping of 1R1 into the Lorentz cylinder, S1 x 111 , in a helical or 

self-intersecting manner. Iff satisfies any of a), b), or c), then f. must be injective, and 

f can fail to be injective, achronal, or proper only in the manner just illustrated: For 

example, if f(p) = f(q), p =f. q, then for any curve u in M from p to q, f o u cannot be 

a homotopically trivial loop in V (in fact, its homotopy class cannot lie in the image of 

1r1(M) under/.). Similar statements can be made for f(p) being timelike-related to f(q) 
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and for {p;} having no accumulation point in M while {f(p;)} converges to something in 

v. 
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