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THE SHAPE OF INFINITY 

Richard P.A.C. Newman 

1. INTRODUCTION 

The remarkable developments that have taken place over the last few years in the 

field of low-dimensional topology are well-known. In 1982 Michael Freedman proved a 

5-dimensional proper h-cobordism theorem which led him to a classification of compact 

simply connected topological4-manifolds, and thus to a proof of the 4-dimensional Poincare 

conjecture. And more recently, Simon Donaldson proved that compact simply connected 

smooth 4-manifolds have intersection forms of a very restricted type. This led to the now fa­

mous result that IR4 admits an exotic differentiable structure. Donaldson's work was based 

on gauge theoretical techniques deriving from elementary particle physics, which may well 

benefit in consequence. One may contrast this with the situation for contemporary classical 

general relativity which, although being primarily concerned with manifolds of dimensions 

3 and 4, has yet to make any such contact with the subtleties of low-dimensional topology. 

My objective here therefore is to show, in the context of a fundamental class of space­

times, how relativity can give rise to topological problems that are of both mathematical 

and physical interest. 

Consider an isolated massive body with a history extending indefinitely to the past. 

Suppose the gravitational field is too weak to generate collapse or to give rise to orbiting 

null geodesics akin to those at r =3m in Schwarzschild space-time. To make the situation 

even simpler, assume that there is an IR3 Cauchy surface. Then the underlying space-time 

manifold is diffeomorphic to (standard) IR4 and one may reasonably assume. that all endless 

null geodesics originate from a past null infinity I- and terminate at a future null infinity 

I+. As the space-time evolves, I+ is exposed to data on an increasingly large region of the 
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Cauchy surface and may be expected to respond by exhibiting increasingly complicated 

geometrical and topological structure. In particular one might expect the (Weyl) curvature 

at I+ to grow away from zero and for the global topology of I+ to differ from that of 

Minkowski space. But the dogma of the subject is that neither possibility is realised. It 

will be seen later that this may be founded upon hypotheses which, when expressed purely 

in terms of the space-time, are difficult to motivate. Instead the guiding principle should 

be to presuppose nothing about I+, but rather to determine the restrictions which arise 

from the development of the initial data. 

2. DEFINITIONS 

The first task is to construct precise definitions to describe the situation to be consid­

ered. The following definition provides the means to attach a null conformal boundary to 

a space-time. (In general, of course, such a boundary may be empty.) 

2.1. DEFINITION A cr null asymptote of a space-time (M, g) is a C.,. space-time­

with-boundary (M,g), r 2::: 3, such that 

(a) M = MU8M; 

there exists an open cover {U01 } of M, with associated mappings fi"' : U01 --t [0, 

such that for each a, setting Ua := UOinM and n,. := fiOIIUa, one has giUa = n~(giU.,,) 

and Vfla IUOt n 8M =I 0; 

(c) 8M is a null hypersurface of (M,g). 

Condition (b) implies that every null geodesic of (M,g) is a null geodesic of (M,g), and 

that every such null geodesic having an endpoint in M at a point of aM has infinite 

affine length with respect to g. One now defines future null infinity r+ as the set of future 

endpoints in M of all future endless causal curves of (M, g). Past null infinity I- is defined 

analogously. It is not difficult to show that I+ and I- are disjoint, that their union is 

aM, and that each is the union of components of a.M. 

The next definition identifies the class of space-times to be considered. 



91 

2.2, DEFINITION Let g) be a space-time satisfying the chronology condition 

(i.e. having no timelike curves). Suppose ( M, g) admits a null asymptote ( M, g) such that 

every null geodesic of (A:f,g) admits future and past endpoints in (M,g). Then (M,g) is 

a simple space-time and (M,g) is an asymptotic null completion of (111,g). 

This definition is equivalent to Penrose's definition of an asymptotically simple space­

time [1] in the case of a null conformal boundary, exept that here, the conformal factor in 

the subsidiary Definition 2.1 is not required to exist globally. There are two reasons for the 

new terminology in Definition 2.2. First, Hawking and Ellis [2] have given a definition of 

an asymptotically simple and empty space-time, now commonly accepted in the literature, 

which includes an additional and physically mysterious condition that strong causality 

holds at all points of I+ and I- in U\4, g). And second, asymptotic simplicity is an 

inappropriate description of structure which involves global constraints. One is therefore 

justified in the use of the new term 'simple space-time'. 

The question arises as to whether an asymptotic null completion of a simple space­

time ( M, g) is in any sense unique. A proof of this would have to specify a manner in which 

two distinct completions (NI1 ,gl) and (M2 ,g2 ) should be identified. Geroch [3], in this 

context, identifies a point PI E M1 with a point P2 E M2 iff every null geodesic of ( M, g) 

having a future (respectively past) endpoint at p1 in ( Mt, g1) has a future (past) endpoint 

at P2 in ( M2, g2 ). But he overlooks the possibility that there may exist null geodesics 

of ( M, g) having a common future endpoint in ( Mt, g1 ) but distinct future endpoints in 

(Mz,g2)· The resulting identification space may therefore fail to be Hausdorff, or even 

a topological manifold. Geroch's attempt at a proof of uniqueness is therefore deficient. 

If this is to be taken as an indication that asymptotic null completions may be non­

unique, one should enquire as to the manner in which they may differ. In particular, is it 

possible that a simple space-time could admit distinct asymptotic null completions with 

non-homeomorphic future null infinities? 

The following sections describe the principal properties of simple space-times and their 
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asymptotic null completions. The proofs are given in [4]. 

3. CAUSAL STRUCTURE 

The definition of a simple space-time (111, g) demands the absence of closed timelike 

curves. However the fact that all its null geodesics originate and terminate at the conformal 

boundary allows one to establish a stronger property. 

3.1. PROPOSITION (M, g) is strongly causal. 

There are various ways in which the definition of strong causality may be expressed. 

Probably the most convenient is the following: ( 114, g) satisfies the strong causality condi­

tion at a point p E M if every neighbourhood of p in M contains a neighbourhood v; 
of pin M such that the only causal curves of (M,g) from to v; are those in Vp. Unlike 

the definition given by Penrose [5], this has the virtue that it does not depend upon the 

existence of convex normal neighbourhoods to ensure that it relates purely to the global 

structure of (M, g). H therefore generalises naturally to space-times-with-boundary such 

as any asymptotic null completion g) of (M,g). 

The setup considered in the Introduction assumed the presence of an IR3 Cauchy 

surface. However it is of some interest that the definition of a simple space-time necessarily 

implies the following. 

3.2. THEOREM (M, has a non-compact Cauchy surface C. 

This result implies that the simple space-time (M,g) may be considered to have a 

spatial infinity, defined formally as the inverse limit of sets M- I(K., M) for all compact 

sets J( of M. 

Now let us turn to the causal structure of ( M' g) at z+. The fact that ( M, g) is 

strongly causal implies that (M,g) is strongly causal at all points of M. However there 

remains the possibility that ( Jl,f, g) violates strong causality at I+ or I-. The following 

result enables strong causality violation at z+ to be interpreted in terms of the causal 

structure of ( M, g). 
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3"3" PROPOSITION (M, g) violates strong causality at a point p E I+ iff M C 

I-(p, M). 

This implies that g) is strongly causal at I+ iff no future endless null geodesic of 

(Af, g) cuts the chronological future of every point of M. Analogously, CM, g) is strongly 

causal at I- iff no past endless null geodesic of g) cuts the chronological past of every 

point of 111. Although it would be technically convenient to have (Jvi, g) strongly causal, 

it is difficult to find physical motivation for either of these conditions. (Note that, since 

strong causality violation at z+ and I- has been characterised entirely in terms of (M, g), 

if one asymptotic null completion of g) violates strong causality at I+, then every 

asymptotic null completion of g) must violate strong causality at I+.) 

The strongly causal region of I+ is an open sub manifold It of I+. It has the following 

basic feature. 

3.4. PROPOSITION It is generated by endless null geodesics of (M, g). 

One might that It is necessarily non-empty. Consider any set of the form 

:E := J+(J(, i~I) n I+ for some compact set fC C Jvl. The existence of a non-compact 

Cauchy surface C for (M, g;) implies, fairly easily, that :E is non-empty, and Proposition 3.3 

gives that (M, g) is strongly causal at all points of :E. Hence It contains 2: and so is indeed 

non-empty. A subset of I+ of the form ~ is called a good slice of I+. One may show thai 

a good slice of z+ is a special case of a slice of z+, defined as a locally acausal, compact 

connected embedded topological 2-submanifold of I+. The fact that all good slices of I+ 

lie in It generalizes to the following, surprisingly difficult result. 

3.5. PROPOSITION Every slice of I+ is acausal, is contained in It, and is cut by 

every generator of It. 

Propositions 3.3, 3.4 and 3.5 describe aspects of the causal structure of ( M, g) at I+. 

Analogous results apply to I-. 

It is evident that strong causality violation at z+ or I- is the principal source of 
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causal pathology in ( M, g). But there is also the possibility that ( M, g) may fail to be 

causally simple. In particular, there may exist p E z- such that there is a past endless 

generating segment of .z+ which is also a generator of i+(p, M), so that J+(p, M) is not 

closed in M. Such behaviour cannot be ruled out even if ( M, g) is strongly causal at both 

.z+ and .z-. 

4. TOPOLOGICAL STRUCTURE 

Given a simple space-time with Cauchy surface C and an asymptotic null 

completion (M,g), the main problem is to determine all possible topologies for C, and 

for the future and past null infinities z+ and z-. This problem must, of necessity, be 

considered in two parts. First, restrictions on the topologies of C, z+ and .z- must be 

deduced from the definition of a simple space-time. And second, all remaining possibilities 

must be shown to be realised. Only the first of these tasks is considered here, although 

some effort is made to show that use is made of all available information. 

4.1. AN OLD MISTAKE There is a well-known argument of Penrose [1], published 

in 1965, which purports to show that z+, and likewise z-, always has topology S 2 X IR. 

If this were correct there would be no need to proceed further. However the following 

discussion shows that there is a fundamental error. 

Penrose begins by choosing an arbitrary point p E M and then considers the set 

I: := j+(p, M) n x+ of z+. H is not difficult to see that j+(p, M) must be compact and 

hence that :E must be compact. In general J+(p, M) will posess caustics which complicate 

matters. However it suffices for present purposes to restrict attention to the special case 

in which such caustics are absent. Then J+(p, is generated by null geodesics of (M,g) 

from p to z+, and :E must be homeomorphic to the space of future-directed null directions 

at p, which is homeomorphic to S2 • Let Ii; be the open submanifold of .z+ generated 

by all those generators of z+ which cut E. Since L: is acausal in (M,g), It; must be 

homeomorphic to S 2 x Ift According to Penrose, the compactness of :E somehow implies 
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that the complementary region I* := r+ -It lies in a separate component of In fact 

it is not difficult to envisage a generating flow on a connected z+ for which It is a proper 

subset of :r+. Penrose's argument therefore fails to correctly identify the topology of I+. 

4.2. THE KEY IDEA The following is the basis for all subsequent deductions con­

cerning the topological structure of I+ and C. It originates from Geroch [6]. 

Let N+ be the space of all future-directed null directions over J+(C, M), excluding 

those tangent to I+. 'Then Nc := N+ I cis an S 2 bundle over c and N+ := N+ I I+ is an 

S 2-{pt.} ~ JR2 bundle over I+. Moreover N+ is a topological 6-manifold-with-boundary 

such that oN+= Nc u N+, and the null geodesics of (M,g) from c to I+ equip the triple 

(JV+; Nc, N+) with the structure of a product cobordism. One thus has a horn.eomorphism 

Since Jl/( ~ C x lR is assumed to be connected it follows, in particular, that z+ is connected. 

4.3. A SPECIAL CASE It is instructive to consider first the special case in which 

M is orient able and ( M' g) is strongly causal at x+ and I- 0 The orientability assumption 

on M ~ C )( JR implies the orientability of C which, being a 3-manifold, is therefore 

parallelizable. Thus TM I Cis a trivial bundle and so is Nc. Let L: be a smooth slice of 

I+. By Proposition 3.5 one has x+ ~ L: X lR and, after a little thought, N + ~ T'£; X IR. The 

homeomorphism Nc ~ N+ evidently becomes C x S 2 ~ T'£; X IR which implies 1r2 (L:) '/!- 0. 

Since _M is orientable, so are M, I+ ~ '£; x lR and L:, and one must have L: ~ S 2 and 

I+ ~ § 2 X JR. The homeomorphism Nc ~ N+ now reduces to c X S 2 ~ TS 2 X lR ~ 1R3 X S2 
0 

Geroch [6] cla:imed, without proof, that the homeomorphism C X S 2 ~ 1R3 X S 2 implies 

C ~ lR3 . In fact his claim is correct iff the Poincare conjecture is true. To see this, note 

first that, since the homotopy groups of S 2 are finitely generated, one has 1r*(C) c:::' 0, which 

implies that C is contractible. Second, one shows that C is simply connected at infinity 

(i.e. for any compact set K 1 in C there exists a compact set K 2 ::J K 1 in C such that 

7rt(C- Kz)--+ 7rt(C- K1) is a trivial homomorphism). And third, one assumes the truth 
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of the Poincare conjecture to ensure that C is irreducible (i.e, every tamely embedded 2-

sphere inC bounds a 3-ball in C), The Loop Theorem and elementary surgery may be used 

to prove [4,7] that a 3-manifold is homeomorphic to lR3 iff it is contractible, irreducible 

and simply connected at infinity, Thus, if the Poincare conjecture is true, one must have 

C ;::; JR3 , If the Poincare conjecture is false then, for any homotopy 3-sphere S3 , one has 

(S3- {pL}) X §2;::; ]R3 X §2 [4], 

4.4. THE TOPOLOGY OF FUTURE NULL INFINITY Let us turn now to the 

situation in which the physically questionable condition of strong causality at z+ and z­

is not imposed, For simplicity let us temporarily restrict attention to the case C ;::; IR3 , 

The homeomorphism N+;::; Nc then becomes z+ 25 :IR2 ;::; IR3 X S2 which implies that z+ 

has the homotopy type of S2 , 

Choose an arbitrary point p E M, Then A := j+(p, M) is a compact topologi­

cal 3-manifold-with-boundary, with EJA = j+(p, M) n z+ a slice of z+, Moreover r := 

J+(p, M) n z+ is a topological 3-manifold-with-boundary such that ar = f) A c It, By 

Proposition 3,3 one has I+ -It c J+(p, M) n z+ = r and hence I+ - r c It, The 

generators of It, which all cut of', may therefore be used to define an isotopy of I+ 

onto r, This gives a homeomorphism z+ ;::; r and one obtains graded isomorphisms 

1r*(f') ~ 7r.,(:r+) ~ 1r*(S2 ). Any nowhere-zero causal vector field on M which is timelike on 

M, and on aM is null and tangent thereto, defines a homeomorphism of X= j+(p, M) onto 

C ;::; IR3 , Hence A is a 3-disc, The simple connectivity of r therefore implies the simple con­

nectivity of the adjunction space r Ua A, If r Ua A was compact it would be a homotopy 3-

sphere and r would have to be contractible, Since this is incompatible with 1r*(r) ~ 1r*(S2 ), 

the space rua A must be non-compact, Hence H 3(ru8 A)~ H3 (ru8 A)~ 0, The Mayer-

Vietoris sequence for the triple (I'UaA, f', now gives that H 2 (ruaA) is finitely generated 

torsion module so, by the universal coefficient theorem, one has 112 (r Ua A) ~ 0, Thus 

f' Ua A has the homology of a point, By the Hurewicz isomorphism theorem one obtains 

1r * (f' Ua A) ~ 0 and it follows that r Ua A is a contractible open 3-manifold C 3 , One 



97 

concludes :z+ ~ r ~ C3 - {pt.}. 

4.5. THE MAIN RESULT Let us turn now to the completely general case. Strong 

causality is not assumed to hold at I+ or I-, the Cauchy surface C is not assumed to be 

homeomorphic to IR3 , the space-time manifold is not assumed to be orientable, and the 

Poincare conjecture is not assumed to be true. The discussion in §4.4 gives some idea of 

the arguments involved. 

4.5.1. THEOREM [4]: 

(a) C is homeomorphic to the complement of a point in a homotopy 3-sphere S3 ; 

(b) I+ is homeomorphic to the complement of a point in a contractible open 3-manifold 

C 3 which embeds in S3 i 

(c) I;i is homeomorphic to the complement of a point in :!R3 ; 

(d) every slice of I+ is homeomorphic to S 2 and is a strong deformation retract of I+; 

(e) M is homeomorphic to IR4 . 

Suppose the Poincare conjecture is true. Then (a) gives that Cis homeomorphic to JR3 , 

and (e) may be strengthened to the claim that M is diffeomorphic to (standard) lR 4 . 

Moreover (b) gives that I+ is homeomorphic to the complement of a point in a Whitehead 

manifold W 3 which embeds in S 3 . (A Whitehead manifold is defined to be a contractible 

open 3-manifold such that every compact subspace admits a topological embedding into 

S 3 .) A general Whitehead manifold may be expressed as the monotone union of cubes­

with-handles such that each is contained and deformable to a point in the interior of its 

successor. Not all such manifolds may be embedded in S 3 . 

In the case of an lR 3 Cauchy surface C, for example if the Poincare conjecture is true, 

one now has a fairly clear idea of the general structure of an asymptotic null completion 

(M,g) of a simple space-time (Af,g). Specifically one may embed Mas an open dense 

submanifold-with-boundary of IR3 x [-1, 1] such that 

(a) M = IR3 x ( -1, 1); 
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((3) every set of the form IRa x {t}, fortE (-1, 1), is a Cauchy surface of (M,g); 

(!) I+ (respectively I-) is the complement in IRa x { 1} (respectively IRa X { -1}) of 

a monotone intersection of cubes-with-handles such that each is contained and de­

formable to a point in the interior of its predecessor. 

Moreover, under the identification IRa =sa- {pt.}, spatial infinity is represented as the 

set {pt.} x [-1, 1] c sa x [-1, 1] identified to a point. 

4.6. TOPOLOGICAL STRUCTURE OF THE BUNDLES N+ AND Nc For 

the purposes of this section let I+ be identified with ca - {pt.} for a contractible open 

3-manifold ca, and C with §a - {pt.} for a homotopy 3-sphere §a. A smooth slice 'E is a 

strong deformation retract of I+ and has the property that the bundle N + I'E is equivalent 

to TS2 • One may therefore characterize N+ as the unique IR2 bundle over ca- {pt.} 

admiting a homotopy equivalence i: S2 -+ ca- {pt.} such that i* N+ is bundle equivalent 

to TS2 • Clearly N c is the unique S2 bundle over the contractible space ca - {pt.} and is 

trivial. 

The structure of a simple space-time demands a homeomorphism N+ ~ Nc and it is 

not clear that. this can be achieved other than in the case ca = IRa' §a = sa for which 

one has N+ ~ TS2 x IR ~IRa x S2 ~ Nc. In fact one can show [4] by engulfing techniques 

that the total space of any topological bundle of the form N +, characterized as above, is 

homeomorphic to IRa x S2 • And Michael Freedman's 5-dimensional proper h-cobordism 

theorem may be used [4] to establish a homeomorphism (sa - {pt.}) X S3 ~ IR3 X S2 for 

any homotopy 3-sphere S3 • One therefore has N+ ~ Nc for all C 3 and S3 • The necessity 

of a homeomorphism N + ~ N c for a simple space-time therefore imposes no additional 

restrictions on the topologies of I+ and C beyond those already expressed by Theorem 

4.5.1. 
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5. ASYMPTOTIC GEOMETRIC STRUCTURE 

In the special case that strong causality holds at I+, any smooth slice ~ of I+ is cut 

by every null geodesic generator of I+. The compactness and simple connectivity of~ may 

then be used to show [6] that the Weyl tensor of the unphysical metric g is zero on ~, and 

therefore on the whole of I+. In the general case where strong causality is not assumed 

to hold, this argument adapts to show only that the unphysical Weyl tensor is zero on 

the strongly causal region I({ of I+. However it is possible that non-zero values may be 

attained on the strong causality violating region. The peeling property of gravitational 

radiation will consequently fail. 

6. CONCLUDING REMARKS 

The preceding section describes the principal causal and topological properties of 

simple space-times. The most important outstanding task is to construct, or at least to 

prove the existence of, a simple space-time admitting a future null infinity I+ with a 

topology different from S2 x ffi. The subtleties of some Whitehead manifold different from 

ffi3 (or a counterexample to the Poincare conjecture!) must be reflected in the topological 

structure of any asymptotic null completion of such a space-time. Moreover the light cones 

must somehow be oriented so that the entire space-time manifold lies to the past of every 

point of the strong causality violating region of I+. A simpler initial task might be to 

construct a simple space-time admitting a I+ at which strong causality is violated, but 

which is homeomorphic to S2 x ffi. 
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