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THE WEDDERBURN DECOMPOSITION FOR QUOTIENT ALGEBRAS 

ARISING FROM SETS OF NON-SYNTHESIS 

William G. Bade 

1. INTRODUCTION 

Let B be a complex commutative unital Banach algebra and let R be the radical 

for B. We say B has a Wedderburn splitting if there exists a subalgebra C of B such 

that B = C EB R. If a closed subalgebra C can be found, we say B has a strong splitting. 

The question of the existence of Wedderburn splittings has been investigated in several 

papers. See for example [3] and [8]. There are algebras B for which no splitting exists 

[3, Theorem 5.2] and also algebras having an algebraic splitting but no strong splitting 

[2, Theorem 6.1]. 

Let G be a non-discrete locally compact Abelian group. Our purpose in this note 

is to explore the question of a Wedderburn splitting for the non-semisimple quotient 

algebras of A( G) which arise from compact sets of non-synthesis in G. Let E be such a 

set of non-synthesis and J(E) be the minimal ideal whose hull is E. In 1961, Katznelson 

and Rudin [9] moved that B = A(G)jJ(E) never has an algebraic Wedderburn splitting 

B = C EB R (where R = rad (B) in the case that G is totally disconnected and B is 

generated by its idempotents. In 1987, Bachelis and Saeki proved without any additional 

hypotheses, that A(G)jJ(E) never has a strong splitting. We shall prove here that if 

A(G)jJ(E) has an algebraic splitting, then it has a strong one, and, hence, none at all. 

Actually, the proof shows that A( G)/ H never has a splitting, whenever H is a closed 

ideal satisfying J(E) ~ H ~ I<(E), H =J I<(E). 

2. PRELIMINARIES 

Let A be a complex commutative semi simple Banach algebra with unit 1 and 

structure space <I> A· We suppose in the present discussion that A is a Silov algebra. This 
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means that A, considered as a subalgebra of C( ~A) , is a normal algebra of functions 

([6, Section 39]). If Eisa closed subset of <I> A, we denote by J(E) the ideal offunctions 

f E A which vanish in neighbourhoods of E, and let I<(E) = {f E A [ f(E) = 0}. As 

is well known, J(E) is the smallest idealwhose hull is E, while J(E) and I<(E) are, 

respectively, the smallest and largest closed ideals with this property. If <P E ~A, we 

write J(¢) for J({¢}) and M(¢) for the maximal ideal K({¢}). 

The algebra A is called strongly regular ifJ(¢) = M(¢) for each </J E ~A· We say 

A has bounded relative units if for each <P E ~A, there exists a constant ]{ = Kq, such 

that for each g E J(¢), an element hE J(¢) can found so that gh = g and J[h[[:::; K. It 

will be important for us that the algebra A(T) of absolutely convergent Fourier series 

and many related algebras have these two properties. 

The following theorem generalizing part of Theorem 4.3 of [2] is announced without 

proof in a footnote at the end of that paper. For convenience we prove it here. 

2.1 THEOREIVL Let A be a unital Silov algebra which is strongly regular and has 

bounded relative units. Let v : A -t B be an algebraic homomorphism into a Banach 

algebra B = v(A). Then v has a splitting v = f..l +.A, where f..l : A-t B is a continuous 

homomorphism and -\(A)£;;: radB. 

Proof. By Theorem 3. 7 of [2] there exists a finite subset F = { ¢1 , ... , <Pn} of ~A and 

a constant M such that 

llv(f)[l :5 M[lflll\hll 

for each j, h E J(F) such that fh = f. Let JC be the subalgebra of A consisting of 

those functions f which are constant in some neighbourhood of each of the points of F. 

Now select functions e; E A (1 :::; i :::; n) such that e;ej = 0, i i- j, and such that each 

e; is identically one in a neighbourhood of the point </J; E F. 

Then for any fixed f E K(F), the function g = f- L:~=l f(¢;)e; belongs to J(F). 

Choose h; E J(¢;) so that gh; = g and ![h;![ :::; J( = sup{K¢ \1 :::; i :5 n}. Then if 
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h = h1 ... hn, h E J(F) and gh =g. Hence we have 

llv(f)ll = llv(g)ll +II tf(q);)v(e;)ll 
n 

::::; Mjjgjjjjhjj + IIJII L llv(e;)ll 
i=l 

::::; MKn(ilfll +II tf(q)i)e;ID + IIJII t llv(e;)ll 

:::;M'II!II, 

where M 1 is a constant independent off E K(F). 

Define flU) = v(f) (f E K (F)). Since A is strongly regular, K( F) is a dense 

subalgebra of A on which 11 is bounded. We denote again by 11 its unique continuous 

extension to all of A. Clearly 11 is a homomorphism. Define >.(f) = v(f)- f.-! (f) (f E A), 

so v =f.-!+>... 

Finally we show .\ maps A into R = rad B. For 8 E <li> B, define 8 v = 8 o v and 

81' = 8 of.-!· Then Bv and 81' belong to <li>A and coincide on K(F). Thus 811 = 81', so 

B(>.(f)) = 0 (! E A). Since e E <li>B is arbitrary, .\(f) E R. Consequently v(A) ~ 

f.-!( A)+ R. 

Under the hypotheses of the last theorem we cannot prove that f.l( A) is closed or 

that p(A) n R = (0). The next theorem gives a special situation in which these two 

conclusions hold. 

2.2 THEOREM. Let B be a commutative Banach algebra with unit 1 and radical R. 

Let A = B / R have its quotient norm and suppose that A is a Silov algebra which is 

strongly regular and has bounded relative units. Let B = C EB R be the algebraic direct 

sum of its radical and a subalgebra C. Then there exists a closed subalgebra D of B 

such that B = D EB R. 

Proof. Let 9 : B ---+ A be the Gelfand map. Then the restriction 9 I C is a norm 

decreasing isomorphism from C onto A. Let v : A ---+ C C B be its inverse. By 

Theorem 2.1, v = p +A, where pis a continuous homomorphism and .A( A)~ R. 
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Since v(A)nR = CnR = (0), p(a) = 0 implies v(a) =.\(a) E R, so a= 0. Thus f.l 

is a continuous isomorphism. Moreover, p( A) n R = ( 0), since if p( a) = r = v( a) - .\(a), 

then v( a) E R, so a = 0 and r = p( a) = 0. 

Finally we note that p( A) is closed. For this we note that since a = g (p( a)), we 

have !!aliA:$ liP( a)!! (a E A). Hence if bo =limp-co p(an), then 

as m,n---+ oo. Let an---+ ao EA. Then p(an) =? p(ao) = b0 • Since B = v(A) EB R ~ 

p( A) EB R, we must have B = p( A) EB R, as desired. 

Question. Is the strong Wedderburn splitting provided by the last theorem necessarily 

unique? 

3. ELEMENTS IN SUBALGEBRAS COMPLEMENTARY TO THE 

RADICAL 

Let B = C EB R be a Wedderburn splitting of a commutative unital Banach al­

gebra B. We are concerned with which elements of B must necessarily lie in C. The 

easiest result of this sort is the fact that, even if C is not closed, it must contain 

every idempotent in B. For if e = c + r = e2 , it follows that c2 = c, and that 

(e-c)2 = (e-c)4 = ··· = (e-c)2 n (n EN). Thus r = e-c cannot lie in R 

unless r = 0. An important result of this type is due to Bachelis and Saeki [1]. They 

prove that if the splitting is a strong one, i.e. C is closed, then C contains every doubly 

power bounded element. That is every element bE B for which sup{IIRnlll n E Z} < oo. 

In the next theorem we identify certain larger classes of elements which must lie in C. 

These elements were also considered in [4], where it was shown they are necessarily 

mapped to zero under any bounded derivation from B into a Banach B-module. See 

also [5]. 

3.1 THEOREM. Let B be a commutative unital Banach algebra and let R = rad(B). 

Suppose that B has a strong Wedderburn splitting B = C EB R. Let b E B. Suppose 
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either that 

(i) II exp(nb)l\11 exp( -nb)\1 = o(n) as n-+ oo 

or that b is invertible and 

(ii) 

Then bE C. 

Proof. The proof is essentially the same as that of Bachelis and Saeki [1], taken 

together with an observation from [5]. 

Let P be the projection of B onto C with kernel R. Then P is a continuous 

homomorphism. Let b satisfy (ii) and write b = C + r, where c E C and r E R. Since 

1 E C, P(b-1 ) = c-1 , and 1 + c-1 r = c-1 b. But c-1 r E R, so we have Sp(c-1 b) = {1}. 

Moreover 
1\(c-lb)n\1 ~ \\[P(b-l]njjjjbnl\ 

~ \\P\\\\(b-1 t\\\\bn\\ = o(n) 

as n-+ oo. By Hille's generalization of a theorem of Gelfand (see (7, 4.10.1]) it follows 

that c-1b = 1, sob= c E C. Now suppose b satisfies (i). Then by what we have just 

proved, eb E C. Let b = c + r. Then 

where 

r1 = ~ ~~ = r ( 1 + ~ ( n ~ 1) J · 
Since ec E C, r1 = 0, and hence r = 0, as the second factor is invertible. Thus bE C. 

This last part of the proof is taken from [5]. 

3.2 COROLLARY. [5, Corollary 5.3]. Let B be a commutative unital Banach algebra 

containing a family of elements satisfying either (i) or (ii) which has dense span. Then 

B has no strong Wedderburn splitting. 
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4. QUOTIENT ALGEBRAS OF A( G) 

Let G be a non-discrete locally compact abelian group and let A( G) be the Fourier 

algebra of G. It is well known that A( G) is a Silov algebra which is unital if and only if G 

is compact. Let E be a compact subset of G and let J(E) and K(E) have their meanings 

as in Section 2. If E is not of synthesis, i.e. J(E) ~ I<( E), then it is known that there 

exist infinitely many distinct closed ideals H such that J(E) ~ H ~ K(E) [10]. For 

such H, A(G)IH, with its quotient norm, has structure space E and radical K(E)IH. 

The algebras A( G) I H are a convenient source of non-semisimple commutative Banach 

algebras. We can now complete the result of Katznelson and Rudin. 

4.1 THEOREM. Let G be a non-discrete locally compact abelian grottp and let E ~ G 

be a compact set not of synthesis. Let H be a closed ideal in A(G) satisfying ](E)~ 

H ~ K(E), H # K(E). Then A(G)IH has no algebraic Wedderburn splitting. 

Proof Let B = A( G) I H. The Gelfand map g of B carries B into the restriction algebra 

A(E) = A(G)IK(E). It is well known that A(E) is a strongly regular Silov algebra 

which has bounded relative units [10]. If B has an algebraic Wedderburn splitting, then 

by Theorem 2.2 it has a strong splitting. We now repeat an argument of Bachelis and 

Saeki [1] to show this is impossible. They show that there is a family of doubly power 

bounded elements whose span is dense in B. (They consider the case that H = J(E), 

but this is not essential.) Let f be any function in A( G) which is identically one in a 

neighbourhood of the set E. Then [/ + H] is the unit in B, and if 1 belongs to the 

character group r of G, [! f + H] is invertible in B. Also 

(n E Z), 

and [! f + H] is doubly power bounded, since 

(n E Z) . 

By [6, Section 40.17], if g E A(G) there exist sequences (ak) s:;; C and (!k) E r such 

that L;~=l Ink!< oo and g = L;~=l Gk/k on some neighbourhood of E. Then 
00 

[g + H] = L Gk bk f + H] , 
n=l 
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and an application of Corollary 3.2 completes the proof. 
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