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GREENHOUSE CLIMATE CHANGE FINGERPRINT DETECTION 

David J. Karoly 

1. INTRODUCTION 

This paper provides a brief discussion of methods for detecting climate change as­

sociated with an enhanced greenhouse effect and presents an example of the fingerprint 

detection technique. Much of this discussion is taken from Section 8 "Detection of the 

Greenhouse Effect in the Observations" of the recent review on climate change by the 

Intergovernmental Panel on Climate Change [1] and from notes prepared by Professor 

Tom Wigley, Climate Research Unit, University of East Anglia for that Section. 

There has been some controversy over the issue of greenhouse climate change 

detection. In some cases, detection has been considered to be the demonstration of a 

significant observed climate change consistent with model predictions of the enhanced 

greenhouse effect. In practice, detection also requires that the observed changes are in 

accord with detailed model predictions and not due to other causes. Thus, we must be 

able to attribute all or part of the observed climate change to the enhanced greenhouse 

effect alone (IPCC [1]). 

Over the last hundred years, there has been a significant global-mean surface 

warming of about O.5°C (Fig. 1, [1, 2]). At the same time, greenhouse gas concen­

trations in the atmosphere have increased substantially, with about 30% increase in 

CO2 concentration. The long-term global warming is qualitatively consistent with an 

enhanced greenhouse effect. However, there are marked global temperature fluctua­

tions on decadal time scales shown in Fig. 1 which are an indication of natural climate 

variability on these scales. Very little is known about climate variability on century 
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Figure 1. Global-mean /JU1jace air temperature variations prepared from land-based 

meteorological station data (from Hansen and Lebedeff 

time scales and it is possible that the recent global warming is due just to climate vari-

ability, Global-mean warming is not a good signal to use for identifying an enhanced 

greenhouse effect because there are many possible causes of such a warming. 

It is very difficult to demonstrate a causal relationship between climate change 

and an enhanced greenhouse effect using a single variable, such as global-mean surface 

temperature. The problem is to be able to attribute the observed change to the en-

hanced greenhouse effect with high confidence, The method which has been proposed 

to address this problem is the "fingerprint" method; identification of a multivariate 

signal that has a structure unique to the enhanced greenhouse effect and observation 

of a significant change in this signal (IPCC, [1]). 

In the next section, some general comments on detection strategies are presented 
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and in Section 3, multivariate or fingerprint methods are described in more detail. 

In Section 4, an example of greenhouse climate change fingerprint detection is demon­

strated by comparing the vertical and meridional structure of atmospheric temperature 

changes from greenhouse climate model simulations with the observed changes over the 

last three decades. 

2. DETECTION STRATEGIES 

In seeking to identify an enhanced greenhouse effect in the observational record, 

the following issues must be considered (IPCC,[l]): 

• The strength of the predicted signal relative to the noise, the signal-to-noise ratio. 

• Uncertainties in the predicted signal and in the noise. 

• Availability and quality of suitable data. 

• Statistical methods for testing the similarity of signal and observations. 

Each of these issues will be considered briefly in turn. 

Signal-to-noise ratio 

The signal-to-noise ratio (SIN) provides a convenient criterion for ranking different 

possible detection variables. Detection will be easier for variables with larger SIN. An 

indicator of the strength of the signal can be obtained using the change of a variable 

between control and double CO2 concentration experiments with climate models. The 

noise can be estimated from observations or from model results, generally by using 

interannual variability to estimate climate noise at longer time scales. Model studies 

(Barnett and Schlesinger [3]) have shown the highest SIN ratios for tropospheric and 

surface temperatures and lower tropospheric water vapour content and lowest SIN 

ratios for precipitation and surface pressure. 

For multivariate signals involving spatial patterns, ideally the signal pattern 

should be distinctly different from the pattern of natural variability (noise), ensur­

ing a high SIN. However, it is likely that there will be some similarity between the 
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large-scale patterns for the signal and climate variability because the same feedback 

mechanisms associated with snow and ice extent, water vapour and cloudiness, soil 

moisture and sea surface temperature are common to both natural variability and the 

greenhouse effect. 

Signal and. noise uncertainties 

In general, the enhanced greenhouse signal is derived from climate model simulations 

and there must be great uncertainties about signals for which there are large model­

to-model differences. Some model intercomparisons have been made for double CO2 

equilibrium climate simulations and the most consistent results between the models are 

for the vertical and meridional pattern of atmospheric temperature change (Schlesinger 

and Mitchell [4]). The consistent features of the atmospheric temperature change are 

warming of the troposphere, cooling in the stratosphere, enhanced warming in the trop­

ical upper troposphere and enhanced warming in the high latitude lower troposphere 

in the winter hemisphere. 

Another difficulty with defining the signal is associated with differences between 

the results of equilibrium and transient greenhouse climate model simulations. The 

slow increase of greenhouse gas concentrations and the inclusion of ocean dynamics in 

the transient model simulations leads to slower signal definition and greater variability 

within and between the transient model simulations UV'"'UH'n et a1. [5]). Hence the 

results from equilibrium simulations must be considered only as a guide to possible 

signal structure. 

Since the expected climate changes due to the enhanced greenhouse effect will 

occur on decadal time scales and longer, it is only the low-frequency characteristics of 

natural climate variability which are important in defining the noise. However, these 

characteristics cannot be quantified accurately from observational data because of the 

shortness of the record. Statistical methods may be used to estimate the low-frequency 

variability from interannual variability but this will lead to uncertainties arising from 

any assumptions made in applying a statistical modeL Alternatively, extended cl.imate 
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model simulations maybe used to estimate the low-frequency variability but such 

experiments have not been carried out yet with complex climate models. 

Data availability 

The availability of observational data imposes important limitations through two as­

pects; the definition of an evolving signal in the data and the quantification of the 

low-frequency noise. Both require long record lengths and adequate spatial coverage. 

Reliable upper air data suitable for defining the three-dimensional thermal structure 

of the atmosphere are available only from the late 1950's and extend up to the lower 

stratosphere only. This period of data is probably too short for adequately resolving 

climate change but it is the longest record available for defining the three-dimensional 

structure of any atmospheric parameter. This record is definitely too short for esti­

mating the low-frequency natural variability. 

Statistical testing methods 

In statistical terms, detection studies have generally been phrased in terms of testing 

hypotheses. The possible null hypotheses can be grouped into two types: that there 

is no enhanced greenhouse effect (more commonly, that there has been no change in 

climate); or that observed changes of climate are the same as predicted by model 

simulations of an enhanced greenhouse effect. It is only with the second type of null 

hypothesis that the problem of attribution can be considered. Rejection of this second 

type of null hypothesis could arise because of differences between the observed and 

model climate change due to either the absence of real greenhouse climate change in 

the observations or poor simulation of the greenhouse effect by the model. 

For many of the possible detection statistics which could be used for testing these 

hypotheses, the sampling distribution is unknown because of temporal and spatial 

correlations in the data fields. Thus, non-parametric methods must be use to assess 

significance. These usually involve the generation of a sampling distribution for testing 

the hypothesis by Monte-Carlo or permutation techniques. 

In describing the tests that have been used, it is convenient to introduce some 
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simple notation, following Wigley and Santer [6]. Let the detection parameter be 

T",t, x = 1, n"" t = 1, nt. The subscript t denotes time while x denotes a spatial c0-

ordinate or different variable so that in the univariate case, n", =1. Although the 

time and space variations of T are continuous, in practice T is defined only at discrete 

points and times. To distinguish observed data values from model-generated values, T 

is replaced by D (data) or M (model). Also, T:z;t may be either an instantaneous value 

at t or a time mean over some interval centred on t. 

The two types of hypotheses above can be expressed as two types of statements; 

there has been no change in D:z;t, or changes in DlCt are similar to model prec:lictions 

M"'t. To define changes, we need a reference level, which is usually a time mean over 

an interval centred on t = 0 so that changes are denoted by 8TICt = T",t - T",o. 

Testing of the first type of hypothesis involves questions like: Is 8D",t significantly 

different from zero? or is there a trend in 8D"'t? The second type of hypothesisinvolves 

questions like: Does 8DICt differ significantly from 8M",t? or is there a trend in the 

pattern correlation between 8D",t and 8M",t? 

3. FINGERPRINT METHODS 

The fingerprint method involves the identification of a multivariate signal unique 

to the enhanced greenhouse effect and observation of a significant change in this signal. 

The key aspect of this method is that it involves time series of more than one variable 

or a single variable at more than one location. One might consider the time evolution of 

a set of three-dimensional spatial fields and compare model results with observations. 

This is the only way that the attribution problem is likely to be solved. However, there 

are many difficulties both in applying the method and interpreting the results. Both 

signal and noise uncertainties are larger for spatial fields, there are statistical problems 

in using multivariate tests, there is a large number of characteristics of spatial fields 

or evolving spatial patterns that may be compared and there have been few studies in 

this area (IPCC, [1 D. 
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One type of multivariate detection would be to compare changes in mean fields 

or variability between observations and those predicted by climate models. Tests for 

changes in the mean fields involve comparison of liDxt with liM",t, where oMxt might be 

the scaled difference between lO-year averages from double CO2 and control equilibrium 

model simulations and oD.,t the difference of the sa.me variable between two lO-year 

averages from observational data. 

Pattern correlation methods have been used to compare evolving changes, either 

by correlation of observed and modelled pat terns of change or by the changing cor­

relation of observed and modelled patterns. This method has been used by Barnett 

and Schlesinger [3], who considered the correlation Ct as a function of time between 

bDxt and IiMx = M2x - MIx, where M2 and MI are the mean values from 2xC02 

and lxC02 model simulations. Thus Ct tends to 1 as bDxt tends to 8Mx _ However, 

no noticeable trend was found in Ct, which could be interpreted as non-detection or as 

due to model errors. 

4. A FINGERPRINT EXAMPLE 

The fingerprint used in this example is the zonal mean atmospheric temperature 

difference as a function of height and latitude between double CO2 and control climate 

model simulations. This signal is the most consistent pattern of greenhouse climate 

change for different models. Here, the results from an improved version of the model of 

Manabe and Wetherald [7] are used to define the signaL This climate model consists 

of a spectral atmospheric general circulation model with rhomboidal wavenumber 15 

truncation and 9 levels in the verticaL The changes from the earlier version of the 

model involve explicit cloud prediction based on a relative humidity threshold, rather 

than specified cloud amounts used earlier. This atmospheric model is coupled to a 

mixed layer ocean modeL The climate model was run to equilibrium with normal 

CO2 concentrations and with double CO2 concentrations. The difference between the 

lO-year mean zonal mean temperature from these equilibrium simulations defines the 
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Figure 2. Zonal mean atmospheric te.mpe.rature difference between 10-year averages 

from double. CO2 and control equilibrium simulations oj the GFDL climate model (Man-

abe and Wetherald The conw'Il.r interval is 1° C and negative contours are dashed. 

greenhouse fingerprint for this example, 6Mx , and is shown in Fig. 2. Note the features 

of these temperature differences consistent between models, including warming of the 

troposphere and cooling of the stratosphere. 

There is a relatively short period of observations of atmospheric temperature 

above the surface as reliable radiosonde data with reasonable global coverage are avail-

able from the late 1950's only. In addition, these data have usually been used for 

weather analysis and forecasting. Changes in analysis methods and inclusion of differ-

ent sources of temperature observations, induding satellite-derived temperature sound-

ings, have lead to an analysis record which is inappropriate for investigation of climate 

change. Recently, Oort has updated his global analyses of atmospheric temperature 

prepared from radiosonde data alone from the original period, 1963 to 1973 (Oort [8]), 

to include an additional 15 years up to 1988. These global analyses have been prepared 

using the same analysis technique for the whole period. Problems with these analyses 

may arise through changes in the spatial coverage of the radiosonde network and less 
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than adequate coverage over ocean areas, particularly in the Southern Hemisphere. 

These analyses are used to define the evolving thermal structure of the atmosphere 

over the period 1963 to 1988. The zonal mean temperature is used at seven pressure 

levels; 850, 700, 500, 300, 200, 100 and 50 hPa, and at 5° latitude intervals to be 

compatible with the model resolution. The difference between the lO-year averages 

for the last 10 years (1978-88) and first 10 years (1963-73) of these analyses is shown 

in Fig. 3, with stippling showing differences which are locally significant at the 5% 

level using a t-statistic test. Note the general warming in the lower troposphere and 

cooling in the stratosphere over this period. A Monte-Carlo field significance test shows 

that this difference field is significantly different from zero at more than the 1% level, 

supporting rejection of the type one hypothesis that there has been no climate change 

over this period. 
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Figure 9. Observed zonal mean temperature difference between 10-year averages for 

periods 1978-88 minua 1969-79 from the global analysis dataset of Oort [8f. The con-

tour interval is O.!!' C and negative contours are dashed. Stippling indicates differences 

locally significant at the 5% level using a t-statistic test. 
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To test the type two hypothesis, the observed temperature changes are compared 

with the modelled greenhouse signal. The temperature differences in Fig. 3 have a 

pattern correlation of 0.39 with the greenhouse fingerprint in Fig. 2, which is significant 

at the 10% level using a permutation (Monte-Carlo) test. The two patterns have some 

features in common, including wanning in the lower troposphere and cooling in the 

stratosphere. The largest difference is that the observed level at which the warming 

changes to cooling in the observations is much lower than in the model simulations. 

Other details such as the enhanced wanning at high latitudes and in the tropical upper 

trcliP,olsp.heI:e in the model reslllts are not apparent in the observations. 
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Figure 4. Time series of the pattern correlation between the annual anomalieiJ of 

observed zonal mean temperature and the GFDL model greenhouse fingerprint shown 

in Fig. 2. Each annual pattern correlation is shown by a G, as well as the least-squares 

straight line fitted to these values. 
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The time series of the pattern correlation, Gt , between the observed annual tem­

perature anomalies, 8Dxil and the model fingerprint, 8M"" is shown in Fig. 4. There 

is a trend in the pattern correlations which is significant at more than the 1 % level 

using a non-parametric rank test. This trend indicates that there is an increasing 

manifestation of the greenhouse fingerprint in the observations, apparently a successful 

detection example. 

5. CONCLUSIONS 

A strategy for the detection of an enhanced greenhouse effect in observational 

data has been described, based on the recent IPCC review [lJ. This has involved 

the definition of a multivariate signal of greenhouse climate change, a greenhouse fin­

gerprint, from model simulations and the observation of a significant change in this 

signal using atmospheric data. An example of this method was presented, using the 

zonal mean temperature difference between double CO2 and control equilibrium cli­

mate model simulations as the greenhouse fingerprint and comparing this fingerprint 

with observed atmospheric temperature variations over the last three decades. There 

was shown to be a significant increase in the greenhouse signal in the observational 

data over the period of analysis, 1963 to 1988. This appears to be a successful exercise 

in detection of an enhanced greenhouse effect. 

However, a number of cautions have to be placed on these results. Upper air data 

is available for a very short period, probably too short to resolve a real greenhouse 

climate ch~nge. It is possible that the multivariate greenhouse signal used here is 

not unique to the greenhouse effect and may be due to other forcing mechanisms, 

including decreases in stratospheric ozone concentrations or increases in sea surface 

temperatures. There are important differences between the greenhouse signal shown 

in Fig. 2 and the observed pattern of temperature differences in Fig. 3. These may 

indicate that different forcing mechanisms are responsible for the two patterns, that 

natural variability is confusing the observed pattern or that the model is not simulating 
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the greenhouse signal correctly. These problems show that much more study is required 

in this area of greenhouse climate change fingerprint detection. 
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