Bernstein’s Theorem

MARIA ATHANANASSENAS

Abstract: We present a proof of Bernstein’s theorem for minimal surfaces
which makes use of major techniques from geometric measure theory.

1. THE PROBLEM

Bernstein’s theorem:

Suppose u(z,y) is a C? function on R? which solves the nonparametric min-
imal surface equation

0 u d u '
e —_— + — - Y = 0
oz (,/1+ug+ug> Ay (,/1+ug+u§>
in all of R2.
Then u(z,y) = ax + by + ¢ is affine, i.e. the graph of u is a plane.

Bernstein obtained this result in [BS] as a consequence of another theo-
rem, “Bernstein’s geometric theorem”, stating that a function f(z,y) whose
graph has Gauss curvature K < 0 in the z,y-plane, and K < 0 at some
point, cannot be bounded.

There was a gap in the proof of the geometric theorem and it was not
until 1950 that a complete proof was given (Hopf [H], Mickle [M]).

In the meantime a proof of Bernstein’s theorem was given by Radé [R],
using complex analytic methods.

There are now many complex variables proofs - let us mention here those
by Bers [BL] and Nitsche [N].
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2. A CLASSICAL PROOF IN TWO DIMENSIONS

We sketch here the elegant proof by Nitsche [N] using complex variable
methods.

We rewrite the minimal surface equation in the form

(1+ Ui)uzz — 2uzuyuzyr +(1+ ui)uyy =0.

u solving this equation is necessary and sufficient for the existence of a func-
tion @(x,y) such that

1+u?

1+u2 +ul

Uglly

oy = T
¢ V1+u2+u2

b = 1+u§
vy
V1+u2+ul

Such a function satisfies

¢zz¢yy - iy =1

which is the hypothesis of the following theorem by Jorgens:

Theorem: Let ¢(z,y) verify the equation

in R2. Then ¢ is a polynomial of degree two.

Proof: We can assume that ¢ is convex (changing the sign of ¢ if nece-
sary). Then the map (z,y) — (£,n) given by

is a diffeomorphism from R? onto itself.
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We set ( =& +in and
’UJ(C) =T d)a:(x, y) - Z(y - ¢y(xa y))

(here z and y have to be understood as functions of £ and n). w(¢) is an
entire holomorphic function. Moreover

Poz + Gyy + 2

By Liouville’s theorem w' is constant. Therefore the second derivatives

<1

lw'(O)f?

1—w'|2
¢zx = T—[w' 2 =

I o -
¢yy = 1_|Z/|2 =C2
are constant and hence ¢ a polynomial of degree two.

Returning to the original problem, we see that u, and u, are constant so
that w is linear.

3. ANOTHER PROOF IN TWO DIMENSIONS

The minimal surface equation given above is the Euler-Lagrange equation
for the area functional

Au) = /,/1 + u2 + uidzdy.

obtained by requiring the first variation of this functional to be zero.
Assume M to be a minimizing smooth surface in R3, i.e.

IM N K| <|SN K]| for all compact K C R?

and comparison surfaces S with S = M in R®\ K. (Here |- | denotes the
two-dimensional Hausdorff measure — see notes by M. Ross).

Then M is stable. As definition of stability we use the nonnegativity of
the second variation of the area functional, i.e.

A = /M (IVM¢P — |APCY) di 2 0
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for every Lipschitz continuous function ¢ with compact support in R3. Here

VM denotes the gradient on M and A the second fundamental form of M in

R2 ([S1]; compare also notes by K. Ecker for first and second variation).
For j € N, set

1 | x|<3j
Glz) = 0 | x| > 4?2
21l o x) <2

For a stable surface M we have for every j
AP < [V e < /M IV [2dH2.

Here B, is the 3-dimensional ball about zero with radius j. Let M; = M N
(Bj? \BJ) Then

R3 - 12 79,2 1 -2 3942
| IVEan (log])/ |24
_ 1 2 -2
- ———(logj)2/0 W2 {w e M, : || > t)dt
< 1 /j_2H2{MﬂB L HE+ A (M;)
~ (logj)? \Ji-s t )

Using the condition on M to be minimizing we have (compare to surface area
of sphere).
H*(M N B,) < cr’.

We combine this and the above estimate to obtain

/ Ve[ am? < @

Finally we let j — oo. This gives
|AP=0

and therefore M is a plane.
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4. HIGHER DIMENSIONS

We remark that the classical proof used complex analysis methods. The
second proof presented here used the fact that in two variables any bounded
set has zero absolute capacity (i.e. inf{[|VR’f|dz : f € CIR?), f > 1
on E} = 0 for every bounded set E C R? — this is positive for higher
dimensions).

It was not until the sixties that Fleming [F] gave a new proof of the two-
dimensional theorem, using a method independent of the number of dimen-
sions and provided hope of proving the theorem in more than two variables.

In [F] Fleming is investigating the oriented Plateau problem set in the
newly developed framework on integral currents by Federer and Fleming [FF].
The geometric measure theory techniques described there led to yet another
solution of Bernstein’s problem.

The main idea in the proof is to construct a sequence of surfaces by blow-
ing down the original surface about a point. It is shown that this sequence
converges to a minimizing cone. The question is then reduced to the exis-
tence of singular cones in R"™. Since no such cones exist in R?, Fleming’s
argument gives the new proof in two dimensions.

De Giorgi [DG] improved the result showing that nonexistence of singular
minimal k-cones in R¥+! would imply Bernstein’s theorem for minimal graphs
in R*+2,

In 1966, Almgren [A] proved that there exist no singular cones in R*.
These two last results settled the theorem for three-dimensional surfaces in
R* and four-dimensional in R5.

In 1968 Simons [SJ] extended the result up to R7. The exciting discovery
in this paper is the example of the cone

C={zecR® 2l +22+2)+al=a2+22+22+02%}

which is stable (every compact variation of C increases the area).

Simons’ cone is not only stable but even absolutely area minimizing as
shown by Bombieri, De Giorgi and Giusti in [BAGG]. They also constructed
complete minimal graphs over R", for n > 8, different from hyperplanes.

Bernstein’s theorem was now solved but new problems arise. Let us
mention two questions:
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e Are there any additional conditions on the function u(z,y) which guar-
antee for the solution to be a plane even in higher dimensions?

e Even if the solutions are not planes, do they have other common char-
acteristics? (such as behaviour at infinity.).

For further discussions we refer to [G1], [G2], [O], [S2].

THE PROOF

We discuss here the way in which geometric measure theory techniques
are used for the proof.

Suppose M is a solution of Bernstein’s theorem. We like to think of M
as a smooth minimizing hypersurface in R"*, i.e.

|M N K| <|SnNK]| for all compact K C R™
and hypersurfaces S with S = M in R"" \ K.

Assume p =0 € M and define the rescaled surfaces
_ -1
M;=t;"M.
We let t; — oo and show that there exists a subsequence M converging to
a minimizing set M.

In order to do this we bound the n-dimensional Hausdorff measures
M; N Bg|, in balls By of radius R, to be able to use compactness. We have
J

|M; N Br| = [t;' M N Bg|=1t;"|M N Byg|
< t"c(n)t} R = c(n)R".
For the inequality we used the minimality of M and compared to the surface
area of spheres. :

We can now use the compactness theorem to conclude that
lim;_, |M; N Bg| exists for all R > 0 and that M; converges to C.
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Compactness theorem:

([S1], [G1]) Let {M;} be a sequence of minimizing hypersurfaces in R™*1 such
that OM; = 0 and H"(M; N Bgr) < C(R) for all R > 0. Then there ezists a
subsequence tj; — 00 and a minimizing set My, with Mtj, - M.

We note that the set that we obtain does not need to be a smooth hyper-
surface any longer. Also it could depend on the choice of the subsequence ¢;:
(but not on R). Actually the theorem is formulated for integral currents.

The next step is to study the structure of C; the goal is to show that C
is a cone.

We prove that the quantity - lm—Bﬁ'l is independent of ¢ (by w, we denote
the volume of the n-dimensional ball) We have

|C N By| — lim |M; N B,|
Wpo™ j=oo  w,o™
= lim ————anBtjal
j=00 wy(tjo)"
i MO B

p—roo wnpn

We show that the last limit exists and hence JQQ&l is independent of ¢. In
fact J—M%Bd is bounded (compare to the surface area of spheres, as before)

and also monotonically increasing in p as obtained from the
Monotonicity theorem:

Let N be a minimizing hypersurface in R™*'. Then L—ng-l s monotonically
mncreasing in p.

Sketch of the proof: For almost every p > 0 N N 9B, is a smooth (we
assumed N to be a smooth hypersurface) submanifold.

We define C, = {tz : t€ 0,1,z € NN8B,} U (N \ B,).
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For almost every p > 0 C, is an admissible comparison set, and since N
minimal

INAB,| < IC,nB,l
= g?{"‘l(C,,naB,,)

= Ly (wnoB,)

IA

pd
——|NNB
d pl PI
Here we used the fact that C, N B, is a cone and the last 1nequahty was
obtained by the

Coarea formula: 4INNB,| > |NNdB,|.
Therefore

—(p™""|[NNB,)>0
SEINA B >
and this implies the monotonicity.
We actually know even more

n

|NnB,,|_|NnBc,|=/ |z - v|?
Ny

Wn " Waa™ By\B,) |z|™*?

(see [S1]), where z is the position vector and v the normal to the surface.
Back to the proof we obtain

n

;CmB,,|_|CnB,|=/ |z - vf?
C

0=
' N(Bo\Bo) |z["+2

Wy P™ Wy o™

so for z - v = 0 almost everywhere. Since the position vector is a tangential
vector, C is a cone.

For the last step of the proof we use the regularity result that there
are no minimal cones with singularities for n < 6.
For n < 6 C is a smooth cone and therefore a plane.
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The intuitive reasoning for that is that C as a cone is scale invariant. If
we blow up C about a point, we obtain C itself. On the other hand blowing
up gives us the tangent space at the point, which is a plane for a smooth
surface.

For a plane we have

CnNnB
l————”—l=1forall,0>0.
Wy P™
The original hypersurface M was assumed to be regular. By the definition
of density (M. Ross’ notes)

lim ———-————IM NB,|
=0 wpp"
M B,|
Wp P
lim M0 By|
p—r+00 wnpn
lim ——————-————’p_lM N5
p—roo Wp,
|C N B
Wn
=1

for any fixed p

(using again monotonicity).
Therefore '—Au%ﬁﬂl =1 for all p > 0. Arguing as before for the set C' we
conclude that M must be a plane as long as n < 6.
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