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Abstract. This paper is essentially a survey paper and falls into two parts. The first part is a 
brief overview of the representation theory of groups. The second part looks at some recent results 
in the area; these were chosen so as to maximise their relevance to the audience at the time. Both 
parts are necessarily short and superficial. We refer the interested reader to the references for more 
details. 

AMS subject classification. 20F29 

L Introduction to group theory and representations. Groups are mathe­
matical structures encoding symmetries of systems. Whereas to give an indication of 
size we would use a number, to give an indication of the symmetries of a system we 
would use a group. For example, the nontrivial symmetries of a rectangle consist of 
two reflections, r 1 and r2 , and a rotation, p, through an angle 1r. 
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Note that p can be obtained by first applying r 2 and then applying r 1 . Composition 
of symmetries in this way gives rise to a product on the group elements and we write 
p = r1r2 • There is also the trivial symmetry where nothing changes; it is called the 
identity and often written tor e. Given any symmetry s, the reverse operation, written 
s-1 is also a symmetry. Since we have relations r1r2 = r2r1 , r1 = r11 and r2 = Tz1 , 

the group of symmetries of the rectangle depicted is Z2 X Z2 = { e, r1, r2, r1 T2}. 
Groups satisfy certain axioms, which are very reasonable when you think of the 

above example. They must contain an identity element, every element in the group 
must have an inverse and the product of any two elements in the group must be 
another element of the group. Finally the statement rst must be unambiguous, so 
(rs)t = r(st) for any elements r, s, t of the group. Note that this condition only says 
that the order in which the compositions are calculated doesn't matter; the order in 
which the symmetries are performed may still be vital in general. A group is free if 
no relations hold amongst its elements. 

Since groups are essentially symmetries, the best way to study groups is via 
their actions as symmetries of various structures. In particular, we study groups as 
symmetries of 
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e geometrical structures (geometries), or 
e vector spaces. 

These studies are often related. For example, the rectangle depicted above provides 
us with a geometry on which the group z2 X z2 acts. By embedding the rectangle in 
two-dimensional Euclidean space, R 2 , we derive an action of z2 X z2 on R 2 . However' 
some geometries can not be embedded in Rn for any n. 

1.1. Representation Theory. Symmetries of vector spaces correspond to lin­
ear maps which in tum correspond to matrices. Since we want invertible transforma­
tions we restrict our attention to the set of matrices with non-zero determinant, i.e. 
GLn(C) if we consider complex vector spaces of dimension n. Representation theory 
is then the study of maps G -t GLn(C) which respect the group theoretic structure 
on the group G, called representations. Given a representation p: G -t GLn(C) we 
call n the dimension of p. Since we are interested in the symmetry of the vector 
space irrespective of the basis used, we study representations up to the equivalence 
corresponding to a change of basis. Thus p: G -t GLn(C) and (f: G -t GLn(C) are 
equivalent if there is ann x n matrix P satisfying (f(g) = Pp(g)P-1 for all g E G. 

Unfortunately, the set of representations of G does not determine G but it does 
limit the possible choices of G to a relatively small class. 

Some representations of G have the form 

forgE G 

where p1 and p2 are representations of G of smaller degree. We call such representa­
tions p, and equivalent representations, reducible. Otherwise we say p is irreducible. 

The main problem in representation theory is to classify the irreducible represen­
tations of a group up to equivalence. 

1.2. Geometric Group Them·y. We can study groups via their actions on 
geometric objects. Irreducibility and other representation theoretic notions have ge­
ometric analogues. Also, just as you can have more than one group acting on a 
vector space, you can have more than one group acting on a particular geometry. For 
example, the group of integers Z acts on the real line 

-3 -2 -1 0 1 2 3 

by shifts. The group Z2 * Z2 = (a, b: a2 = b2 = 1) also acts on the real line but in a 
different manner. Given the labelling 

bab ba b 1 a ab aba 

the elements of z2 * z2 act by left multiplication on the labels, and hence by reflections 
and shifts on the line. 

More generally we can think of groups which act on trees, i.e. graphs with no 
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multiple edges and no loops such as 

--
--

::: 

::: 

We say a group G acts freely on the vertices of a tree if for each pair of vertices ( u, v) 
in the tree there is at most one group element g E G sending u to v. 

Henceforth all trees considered will be infinite and homogeneous, i.e. every vertex 
has the same number of edges incident upon it. 

Given a tree, there is a notion of its boundary. This corresponds to all semi­
infinite paths on the tree with two such paths considered equivalent if they eventually 
coincide. The boundary can intuitively be thought of as the set of endpoints of the 
tree. For this reason we often refer to the elements of the boundary as points at 
infinity. Given a point at infinity, w, there is a geometric operation on the tree called 
a retraction from w. Loosely speaking this corresponds to picking the tree up by w 
and letting it hang. All edges at a given level are then identified with each other. 

2. Haagerup's inequality for trees. Suppose r is a free group on a set N+ and 
let N = N+ U N+1 . For each c E r there exist unique ai E N such that c = a1 ···an 
with aiai+l # 1. We define a length function on r with respect to N by taking 
L(c) = n. 

Suppose h E £1 (r) is supported on words of length n, where £1 (r) denotes formal 
linear combinations of element in r whose coefficients form a sequence in £1. Such an 
element gives rise to an operator 

where 

(!*h) (c) = 2: f(a)h(b) 
ab=c 

and £2 (r) denotes formal linear combinations of element in r whose coefficients form 
a sequence in £2 • This defines a representation p of £1 (r) on £2 (r) via p( h) = Ph called 
the right regular representation of £1 (r) on £2 (r). 
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The operator norm of Ph is of interest but not straightforward to calculate. Efforts 
have been made to bound it by other more tractable norms. In 1979, Haagerup proved 
that if g E £1 (f) is supported on words of length n then 

IIPgiJ:::; (n + 1)JJgll2· 

Thus for each f E £2 (f) 

llf * gJiz:::; (n + 1)JiflbiiYII2· 

This result was a key ingredient in his proof that c; (f) has the metric approximation 
property [7]. In 1990 Jolissaint established an analogue of Haagerup's inequality for 
word hyperbolic groups [8]. This was used by Cannes and Moscovici in the same year 
to establish the Novikov conjecture for word hyperbolic groups [6]. 

Every free group r of the form described acts on a tree. Such a tree can be 
constructed by taking a vertex for each element in f and joining the vertices u and v 
by an edge if there is an element a E N satisfying v = ua. Each element 'Y E f acts 
on the tree by sending the vertex u to 7u. We use this tree to gain geometric insight 
into the operator p9 . 

Suppose X E f and Ox E £2 (r) is the point mass at x, i.e. the element X thought 
of as a formal linear combination of elements of r. Then 

(Ox *9) (y) = L 8x(a)g(b) 
ab=y 

= 2: g(b) 
xb=y 

On the tree, x-1y represents the unique shortest path from x toy. So 8x * g evaluated 
at y E r corresponds to the evaluation of g on the geodesic between x and y in 
the tree. Haagerup's bound can be obtained by breaking the operator p9 into pieces 
corresponding to the ways in which such paths can be folded when a retraction from 
a fixed (but arbitrary) point at infinity is performed. Since g is supported on words 
of length n, the paths in question will be of length n. Hence there are n + 1 ways of 
folding each path and this is essentially where the constant term in the bound comes 
from. This is a beautiful example of the interaction between representation theory 
and geometry. 

3. Haagerup's inequality for A2 buildings. Trees are 11 buildings and 12 

buildings are higher dimensional analogues of trees. A tree can be thought of as 
many copies of R ~lued together and each copy of R is segmented or tesselated by 
unit intervals. An A2 building can be thought of as many copies of R 2 glued together. 
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Each copy of R 2 is tesselated by equilateral triangles 

and the gluing takes place along lines in the tesselation. By considering only the 
vertices and edges of an A2 building Vwe obtain a graph called the !-skeleton of the 
building. In much the same way that free groups have a natural action on infinite 
homogeneous trees, groups called A2 groups have a natural action on the 1-skeleton 
of homogeneous A2 buildings (see [5, 10, 11]). An A2 group r has a shape function 
analogous to the length function for free groups except that it takes values inN x N. 
This reflects the use of R 2 instead of R. 

In [11], we prove that if r is an A2 group, pis the right regular representation of 
£1 (r) on £2 (r) given by p9 (f) = f * g and g E £1 (f) is supported on words of shape 
(m,n) then 

IIP9 II ~ ~(m + l)(n + l)(m + n + 2);/max(m,n) + lllgll2· 

We conjecture that our calculations are not optimal and that the term y'max(m, n) + 1 
is an error term. Thus we conjecture that 

1 !If* gjj ~ 2(m + l)(n + l)(m + n + 2) I/JIJ2IIgll2 

for any f E P(r). 
In fact we go further. Buildings of other types exist. 
Suppose Ll is an affine building of rank k and type X, V is the vertex set of !). 

and IJ: V x V -+ Nk is a shape function encoding the shape of the convex hull of pairs 
of vertices. Let <I> x be a root system of type X, { a 1, ... , ak} a set of simple roots in 
<I> x and m; a variable associated to ai. Fix v0 E V. 

If r is a group acting on .6. the shape function 1J induces a shape function on r 
(also denoted by 1J) via a( c) = a(v0 , cv0 ) forcEr. Suppose the action of r on Vis 
free. We conjecture that if g E £1 (r) is supported on words of shape (m1, ... , mk) 

and f E £2 (r) then 

where 

p(mi) = IT 
o:E<P:t; 

Oi=C1 Oil+·· "Ck O:k 

C1mi + · · ·Ckmk + C1 + · · · + Ck 

c1 + · · · + ck 
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4. The Weyl Dimension Formula. Buildings are also naturally associated to 
other groups called Chevalley groups. If G is an infinite Chevalley group over an 
algebraically closed field its non-zero irreducible rational representations are indexed 
by weights. There is one fundamental weight Wi for each simple root ai and each 
weight A can be wriiten as A = m1w1 + · · · + mkwk for some mi E Z. The dimensions 
of these representations are given by the Weyl dimension formula, namely 

II 
aE<l?1; 

a=c10<1 +···Ckll!k 

c1mi + · · · Ckmk + c1 + · · · + Ck 

c1 + · · · + Ck 

Thus if our conjecture is true it would be another connection between representation 
theory and geometry. This time it would be a link between the representation theory 
of the Chevalley groups and the geometric representation theory of the A2 groups and 
their generalizations. 
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