
THE LP BOUNDEDNESS OF RIESZ TRANSFORMS 

ASSOCIATED WITH DIVERGENCE FORM OPERATORS 

XUAN THINH DUONG AND ALAN MCINTOSH 

ABSTRACT. Let A be a divergence form elliptic operator associated with a quadratic 
form on 0 where 0 is the Euclidean space 1ft n or a domain of 1ft n . Assume that A 
generates an analytic semigroup e-tA on L 2 (0) which has heat kernel bounds of Poisson 
type, and that the generalised Riesz transform \7 A -l/2 is bounded on L 2 (0) . We then 
provethat vA- 112 isofweaktype (l,l),henceboundedon LP(O) for l<p::;2. No 
specific assumptions are made concerning the Holder continuity of the coefficients or the 
smoothness of the boundary of 0 . 

1. Introduction. 

Let n be the Euclidean space lR n or a domain of lR" . In the latter case, no 
smoothness condition is assumed on the boundary of D unless it is implied by other 
assumptions. Let Q be the sesquilinear form on the product space V X V, where 
C3"(D) c V c W 1 ,2 (D), given by 

(1) 

for j, g E V , and a;j are bounded, measurable, complex-valued coefficients which 
satisfy 

(2) 
i,j i,j 

for some constant c ' for all ( E en and almost all X E n . We also assume the 
uniform ellipticity conditions 

(3) 81(12 < ~e L a;j(x)(jCi < K:l(l2 
i,j 
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where 0 and K, are positive constants uniformly for X E n and ( E en . 
Let A be the divergence form operator associated with the form Q in the sense 

that A is the operator in L2 (!1) with largest domain 'D(A) which satisfies 

(4) < Au,g > = Q(u,g) 

for all u E 'D(A) and all test functions g E V. Different choices of the space V give 
the operator A different corresponding boundary value conditions when !1 is a domain 
in JRn. For example, when V is W~·2 (!1) and W 1 •2 (!1), it corresponds to Dirichlet 
boundary conditions and Neumann boundary conditions, respectively. 

The operator A generates a bounded holomorphic semigroup e-zA, I argzl < J-l 

for some J-l < ¥". See [K], Chapter 9. 

In this paper, we consider the generalised lliesz transform T = V' A -l/2 associated 
with the divergence form operator A, defined by 

1 1oo -sA ds Tu = r:;; V'e u r;;· 
2y7l' 0 ys 

Note that if A is the Laplacian -.6. on !Rn, then T is the classical Riesz transform. 
A natural question is the boundedness of T on LP spaces. In [AT], it is proved that 
when !1 = IR.n, the operator T is bounded from the Hardy space H1 (1Rn) to L1 (1Rn), 
hence by interpolation, is bounded on LP(JR.n) for 1 < p ~ 2, under the following 
assumptions: 

(a) The analytic semi group e-tA generated by A has kernels which possess Gauss­
ian upper bounds and Holder continuity bounds in their space variables; and 

For more details, see [AT] Chapter 4, Theorem 1. 

The aim of this paper is to prove the LP boundedness of T without the assumption 
of Holder continuity in the space variables of the kernels of the semigroup e-tA. An 
important consequence of removing the assumption of Holder continuity is that we can 
obtain positive results when n is a domain of JR. n without any assumptions on the 
smoothness of its boundary. Thus the usual Calder6n-Zygmund operator theory is not 
directly applicable for two reasons: the kernels may not be Holder continuous, and the 
domain may not be of homogeneous type. 

We overcome these problems by using recent results on boundedness of singular 
integrals in [DMc]. We also use the idea in [CD1] of proving a weighted L2 estimate. 
-·:is paper [CD1] of Coulhon and Duong carried out a similar program for the Laplace­
Beltrami operator on a Riemannian manifold. It also treated boundary value problems 
for the Laplacian on domains in !Rn, generalising earlier results in [JK]. 
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The authors gratefully acknowledge the interest of Thierry Coulhon and Pascal 
Auscher in this work, and the value of our discussions with them. 

2. Singular integrals. 

Let S1 be the space ~ n or a connected open subset of ~ n , equipped with Euclidean 
distance and Lebesgue measure. We assume no smoothness assumption on the boundary 
of S1 unless it is implied by other assumptions. For such an S1, there exists a subset 
X such that S1 ~ X ~ ~ n and the space X equipped with Euclidean distance and 
Lebesgue measure is a space of homogeneous type. This means that X has the doubling 
volume property 

where a is a constant uniformly for all x EX, r > 0, and IBX(x;r)l denotes the 
Lebesgue measure of the ball in X with centre x , radius r . 

The doubling volume property implies the following strong homogeneity property 

for some a1 uniformly for all ,\. 2: 1 , with n the dimension of the space. It also implies 
the following result. 

Lemma 1. Given 1 > ~ , then 

Proof. 

I (1 
n 

~ I ( 1 + lx ~ Yl 2
) -~ dx 

- 2kvs:Six-yl9k+ly's 

:::; c IBX (y; v's)l + L IBX (y; 2k+1v's)l (1 + 22k)-~ 

:::; c IBX (y; v's)l 

by the above homogeneity property. D 
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One obvious choice of such an X is Rn itself, though it is preferable to choose X 
smaller if possible. See Conditions (6) and (7) in Theorem 1, Conditions (9) and (10) 
in Section 3, and the application in Section 4. 

Let T be a bounded linear operator on L2 (0) with an associated kernel k(x,y) 
in the sense that 

(5) (Tf)(x) = l k(x, y)f(y)dy 

where k( x, y) is a measurable function, and the above formula holds for each continuous 
function f with compact support, and for almost all x not in the support of f. 

The following theorem is essentially Theorem 2, [DMc]. 

Theorem 1. Let T be a bounded linear operator from L 2 (0) to L 2(0). Assume there 
exists a class of operators At, t > 0, defined on L2 (0) which is represented by kernels 
at(x,y) in the sense that 

(a) Atu(x) = f0 at(x,y)u(y)dy for any function u E L 2(n)nL1 (0), and the 
kernels at ( x, y) satisfy the following conditions: 

(6) 

for all x, y E n' where ht(X, y) is defined on X X X by 

(7) 

for some m > 0 , and s is a positive, bounded, decreasing function satisfying 

lim rn+<s(rm) = 0 
r--too 

for some e > 0 , and n the dimension of the space. 

{b) the operators T- TAt have associated kernels Kt(x,y) in the sense of (5), 
and there exist constants C and c > 0 so that 

(8) f IKt(X, y)ldx ::; c ' yEn . 

{xEO:Ix-yl;?:ct1 /m} 

Then the operator T is of weak type (1, 1). Hence T can be extended from 
L 2(0) n LP(O) to a bounded operator on LP(O) for all 1 < p::; 2. 
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NOTES: 

(a) The class of operators At plays the role of approximations to the identity. 
Note that we have no smoothness assumption on the space variables of at. 

(/3) Typical examples of the bound ht(x, y) on Rn x Rn are the Gaussian bound 

crn/2 exp{ -aix- Yl 2 /t} 

and the Poisson bound 
ct 

h) The key estimate needed in Theorem 2 is Condition (8). In a space of homo­
geneous type, this condition is strictly weaker than the usual Hormander condition for 
weak type (1, 1) estimates: 

l ik(x, y)- k(x, yl)idx::; C 
Jlx-yJ~.Siyl -yl 

for all y, y1 EX. See Proposition 1, [DMc]. 

( o) The uniform upper bound in (7) is in terms of volumes of the balls in the space 
of homogeneous type X , not the domain n . This plays an essential role in overcoming 
the problem that n does not satisfy the doubling volume property. 

(E) Theorem 1 builds on an earlier result about LP boundedness of functional 
calculi [DR]. 

3. Boundedness of generalised Riesz transforms. 

Let A be the divergence form operator associated with a sesquilinear form Q as 
in (1) to ( 4). We assume that 

(i) The analytic semigroup e-tA generated by A has kernels Pt(x, y) with Poisson 
type upper bounds, that is 

(9) iPt (X' y) I ::; c ht (X' y) 

for all t > 0' and all x, y En' where ht(X, y) is defined on X X X by 

(10) 
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where c is a constant, {3 > ~, and Bx is a ball in a space of homogeneous type X 
such that Q ~X ~ lR n. Such functions ht satisfy Condition (7) with m = 2. 

( ii) The operator T = \7 A -l 12 defined by 

T 1 1oo" -sA ds u=-- ve u-
2ft 0 Vs 

is bounded on L 2 (0). This holds if and only if the domain D(A112 ) C V with 

II Vu ll2 ::::; c II A 112 u 11 2 · 

(iii) The space V, the domain of the sesquilinear form, is invariant under multipli­
cation by bounded functions with bounded, continuous first derivatives. This condition 
is satisfied by Dirichlet, Neumann and mixed boundary conditions. 

This last condition could no doubt be weakened by appropriately adapting the 
weights Wt used in the proof. 

Our first observation is that condition (i) implies that the semigroup e-tA has 
estimates on the time derivatives of its kernels. More specifically, we have the following 
result. 

Lemma 2. Let Tt be a uniformly bounded analytic semigmup on L 2 (fl) and assume 
that Tt, t > 0, has a kernel Pt(x, y) satisfying 

c 
IPt(X, y)j ::::; IBX (y; y't) 1(1 + lx712 )P. 

d l n {3 h h dk dk an et 2 < 1 < . T en t e time derivatives "ifil' Tt have kernels dtk Pt which satisfy 

Proof. This proof has three steps. First, we prove uniform bounds on complex heat 
kernels, then use the Poisson formula on the half plane to obtain Poisson bounds on 

complex heat kernels. The desired estimates on ::k Pt ( x, y) follow from a standard 
Cauchy formula. See Section 2.1 [CD2], [DR] and their references for details. 0 

It follows from the boundedness of the operators ~e-tA = Ake-tA on the L 2 

space that the heat kernels Pt(., y) and their time derivatives ftpt(., y) belong to the 
domain of the operator A. In particular, Pt(., y) E V and so 'Vp1(., y) E L 2 (Q). 
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We now introduce a family of smooth, bounded, radially increasing weight functions 
wf(x, y), t > 0, R 2: 2, as follows: 

wf'(x,y) ~ { 

(1 + lx7l 2
) lY+' , lx - Yi :S Rv/f, 

(1 + (2R)2 )~+e, lx- Yi2: 2Rvt 

smooth, increasing when Rv/f :S lx - Yi ::::; 2Rv/f 

where 0 < E < (3- ¥- . The weight functions can be chosen so that their space derivatives 
satisfy the condition 

(11) I owf(x, y) I c R( ) 
J:; ::::; r.;_wt x,y. 
UXj yt 

We also use the weight functions Wt(x, y) = (1 + lx71\~·+t. It is straightforward 
that the estimate (11) is satisfied with Wt(x,y) in place of wf(x,y). We comment 
that, using Lemma 1, 

(12) 

f 1 dx ::::; sup 1 
2 J \ dx 

w 8 (x, y) lx-yi2:Vt (1 + lx~yl )t/2,.... (1 + lx~yl )n/2+E/2 
lx-vi2:Vt " 

< ciBx(y,y'S)I 
- (1+~)t/2 

We show a key estimate on the space derivative of Pt(x, y) in the next lemma. 

Lemma 3. Let 

Then Jt (y) is finite and satisfies 

Proof. We use an idea in [CDl]. First consider 
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Then, by the ellipticity assumptions, 

We noted above that Pt(., y) E V, and so by assumption (iii), Pt(., y)wf(., y) E V 
also. (This is one reason for introducing wf rather than treating Wt directly.) Also 
\7 Pt ( . , y) E L 2 ( 0) . Therefore, for each y E 0 , the quantity J1R(y) < oo . 

Since Pt(. ,y) E 'D(A), 

IQ(pt( ·, y), Pt( ·, y)w{l( ·, y))l = I <Apt(·, y), Pt( ·, y)w{l( ·, y) > I 

= ll ~Pt(x,y) Pt(x,y)w{l(x,y) dxl 

c 
< r; . 
- t IBX (y, vt)l 

This inequality is a consequence of the upper bounds on the heat kernels and their time 
derivatives, and of Lemma 1. 

Further, using (11) and Lemma 1, we have 

1'"" ( )OPt(x,y)- ( )awf(x,y) d 
~a;i x ~ Pt x,y ~ x 

n . . uXj ux; 
•,J 

Hence 
R C C ~() 

Jt (y) ~ tiBX(y,.fi)l + .fiiBX(y,.fi)I1/2VJi-WJ. 

Therefore, using the fact already proved that J1R(y) < oo , it follows that 

(13) JR( ·) < c 
t y - tiBX(y,.fi)l. 
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We conclude that 

Jt(Y) = ll\7 xPt(x, y)i 2 wt(x, y) dx 

=sup r l\7 xPt(X, yWwt(X, y) dx =sup r lv xPt(X, YWwf(x, y) dx 
R llx-yi~R R ln 

:::; t IBX(:, Vt)l (using (13)). D 

The main result of this paper is the following theorem. 

Theorem 2. Under the above assumptions (i), (ii), and (iii), the operator T = vA- 112 

is of weak type (1, 1). Hence T can be extended to a bounded operator on Lp(fl) for 
1 < p:::; 2. 

Proof. It is sufficient to prove that the conditions in Theorem 1 are satisfied with m = 2 
and an appropriate choice of operators At . 

Choose At =e-tA. Conditions (6) and (7) are satisfied because of assumption (i). 

Let Kt ( x, y) be the kernels of the operators T(I - e-tA) . We just need to check 
Condition (8) , i.e. 

(14) r IKt(x,y)i dx:::; c' y E fl. 
Jix-yj?_Vt 

Let us compute the kernel Kt ( x, y) . We have 

\7A-lf2(J _e-tA)= _1_ r+= \7e-sA~ __ 1_ r+= \7e-(s+t)A~ 
2Vif Jo Vs 2Vif lo Vs 

= _1_ r+= (-1-- X{s>t}) \7e-sA ds. 
2ft lo Vs JS=t 

Therefore 

(15) r 1 1+oo ( 1 X {s>t}) l'\.t(X, y) = r,:;; .r;- JS=t \1 xPs(x, y) ds . 
2y7r 0 ys s- t 

Thus the key to proving (14) is a good estimate of 

(16) { l\1 xPs(x, y)i dx. 
Jix-yj?_Vt 
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Using the weight functions w 8 ( x, y) introduced previously, we have 

J IV' xPs(x, Y)l dx 

c 1 < - -:------:;-:---;-:-
- y's (1 + ~)•/2 

by (12) and Lemma 3. 

Combining this with (15), elementary integration shows that (14) is satisfied. This 
completes the proof. D 

NOTES: 

(a) The assumption (i) of Theorem 2 on heat kernel bounds is satisfied by large 
classes of divergence form operators on R. n or a domain of R. n . In the case of Dirichlet 
boundary conditions, we can have Gaussian heat kernel bounds without any conditions 
on smoothness of the boundary of n. In the case of Neumann boundary conditions, 
we need the domain h to possess the extension property to ensure heat kernel bounds 
even with the Laplacian. For example, see [Da], [AE] for divergence form operators 
with real coefficients, [AMcT] and [A] for certain operators with complex coefficients. 

(b) The usual methods imply that T is bounded on LP(!l) when 1 < p < f3 for 
some f3 > 2 . On the other hand, there are counter-examples due to Kenig which show 
that for any a: > 2 , there exist divergence form operators on R. n which satisfy the 
hypotheses of Theorem 2 but whose associated Riesz transforms are not bounded on 
LP for p >a:. See for example [AT] Chapter 4. 

(c) If the assumption (ii) is replaced by the statement that Tis bounded on Lq(!l) 
for some q > 1 , then Theorem 2 remains valid for 1 < p ~ q . 

4. An Application. 

Let us conclude with one specific consequence of Theorem 2. Clearly its applicability 
goes well beyond this. . 

Theorem 3. Let A be the divergence form operator with Neumann boundary condi­
tions associated with a sesquilinear form Q as in (1} to (4}, where V = W1•2 (!l). 
Suppose that the coefficients are real and satisfy a;j = aji , and that n is a bounded 
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domain which satisfies the extension property. Then the Riesz transform T = \7 A -l/Z 

is a bounded operator on LP(fl), 1 < p :::; 2. 

Proof. Let X be a ball in ~n which contains S1, so that 

1 ----=- ~ max{l cn/2 } . 
IBX (y; Vt) I ' 

The assumption (i) is proved under these conditions in [Da], Theorem 3.2.9, while 
assumption (ii) follows from the fact that Q is a positive Hermitian form ([K], Theorem 
VI.2.23). Therefore Theorem 2 can be applied to give the result. 0 
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