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On convergence of some integral transforms. 

C. Meaney and E. Prestini 

ABSTRACT. 

We sketch some results concerning extensions of the Carleson-Hunt Theorem to higher 

dimensional Euclidean spaces and to some symmetric spaces. 

ONE DIMENSIONAL BACKGROUND. 

We begin by recalling the results of Carleson and Hunt in the setting of the real line. 

Suppose that f is in a Lebesgue space V'(R) for some 1 < p :5 2 and that its 

Fourier transform is ':]f. Define the partial sums of its inverse Fourier transform by 

Snf(x) = jR ':ff(y)e'"'!l dy, 
-R 

for all x E Rand R > 0. The convergence behaviour of {Snf: R > 0} is controlled by 

the maximal function 

.£i f(x) =sup ISnf(x)l, VxER. 
R>O 
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CARLESON-HUNT THEOREM. 

(a) If 1 < p ~ 2 then there is a constant Cp > 0 such that 

V/ E £1'(R). 

(b) If J E £1'(R) and 1 < p ~ 2 then limR-+oo SRf(x) = f(x) for almost every x E R. 

Part (b) follows from part (a) since limR-+oo SRf(x) = f(x) for all x when / E 

C:'(R) and C:'(R) i.s dense in L'~'(R). See [dG] for the details of this argument. 

The original result of Carleson [C] was concerned with Fourier series. See the paper 

of Kenig and Tomas [KT] for the transition from the case of Fourier series on the circle 

to Fourier transforms on the line. 

RADIAL FUNCTIONS ON EUCLIDEAN SPACES. 

For each n ;?:: 1, let ':]., denote the Fourier transform acting on functions on R .. , nor-

mali.zed as in Stein's book [S]. If R > 0 then mR will denote the characteristic function 

of the ball of radius R in R". We are interested in the convergence behaviour of the 

spherical partial sums 

for R > 0. Such a. summation process is natural from the geometric point of view since 

it corresponds to the spectral resolution of the Laplacian on R... Define the maximal 

function 

.S~f(x) = sup ISnf(x)l. 
R>O 

This controls the convergence of {Snf(x) : R > 0}. 

The Carleson-Hunt Theorem cannot be extended to higher dimensions when p 'I 2, 

on account of Fefferma.n's Theorem which states that mR i.s not a multiplier for L'~'(R"") 

when p f 2, see [F]. The higher dimensional case when p = 2 is still an open problem. 



147 

Some progress can be made when a symmetry hypothesis is been added. The 

group of rotations SO(n) acts on functions on Rn and we let LI'(Rnyadiol denote the 

subspace of elements of D'(Rn) which are invariant under the action of SO(n). Radial 

functions depend only on the distance from the origin and we sometimes write l(lxl) 

in place of l(x) when I is radial, to emphasize this dependence. In 1954 Herz [H] 

had found that the partial summation operators were bounded on D'(Rnyadial for 

2n/(n + 1) < p < 2n/(n- 1). That is, mR is a multiplier of these spaces for each 

R > 0. Kanjin [Ka] and Prestini [P] extended the Carleson-Hunt Theorem to these 

same spaces. 

KANJIN-PRESTINI THEOREM. For each n 2: 1 and 

2n/(n + 1) < p < 2nf(n- 1) 

there is a constant Cn,p > 0 such that 

This result is sharp. H n > 1 and p = 2n/(n + 1) Kanjin has shown that there is 

an I E LP(Rnyadiol with compact support and {SRI(x) : R > 0} divergent for almost 

every X ERn. 

OTHER SYMMETRIES. 

One way of thinking of a radial function is to view it as an example of a function whose 

orbit under the action of SO(n) spans a finite dimensional subspace. In [MPl] we 

considered products of radial functions and spherical harmonics. For each n 2: 1 and 

k 2: 1, let c#n,lc denote the space of polynomials which are harmonic and homogeneous of 
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degree k on R". The elements of SO(n) act as endomorpbisms on each space dln,lc· The 

Bochner-Heeke identity tells us how the Fourier transform acts on products of spherical 

harmonics and radial functions. See page 72 of [S] for the proof of this result. 

BOCHNER-HECKETHEOREM. Suppose that I is a radial function on R" and 

Y1c E dln,lc is such that I·Yic E L2(R"). Then 

a.e. x E R". 

When I is a radial function on R" andY,. E dln,lc is such that I.Y,. E L2 (R") then 

I can be treated as an element of L2 (R"+21c)radiol. Furthermore, observe that 

COROLLARY. Suppose that I is a radial function on R" andY,. e dln,lc is such 

that I.Yt. E L2(R"). Then there are constants C..,lc > 0 and 'Yn,lc > 0 for which 

We can define certain closed subspaces of L2(R") in terms of products of radial 

functions and spherical harmonics. For each k ~ 0, let L2 (R")1c be the linear span of 

products f.Yic E L2(R") such that I is radial and Y1c E dln,lc· Then each L2(R")Ic 

is a closed subspace of L2(R") and the algebraic direct sum E9~0L2 (R")Ic is dense in 

L2(R"). An element I e L2(R") has the property that its orbit under the acti:<>n of 

SO(n) spans a finite dimensional subspace if and only if it is in E9~0L2 (R"),.. The 

following result is in [MPl]. 
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THEOREM 1. Fix n ~ 1 and N ~ 0. There is a constant Cn,N > 0 such that 

COROLLARY. If I E L2(R") bas tbe property tbat its orbit under tbe action 

of SO(n) spans a Bnite dimensional subspace tben {SRI(x) : R > 0} converges for 

almost every x E R". 

See [R] for other applications of the Bochner-Heeke identity in dealing with maximal 

operators. 

SMOOTHNESS. 

An alternative direction in seeking higher dimensional extensions to the Carleson-Hunt 

Theorem is to assume the function has some smoothness. Let 8 be a positive real number 

and let · 

H"(R") = { 1 e L2(R") = L .. l9' .. 1(e)l2 (1 + leD2" cie < oo} 
be the usual Sobolev space. Carbery and Soria [CS] have shown that if g E u .. >oH" (R") 

then {SRg(x) : R > 0} converges for almost every x E R". (A similar statement for 

eigenfunction expansions of the Lapla.ce:.Beltrami operator of a compact Riemannian 

manifold was proved in [M].) 

Combining this with Theorem 1 we see that every finite linear combination of 

translates of elements of E9~0L2(R")A: plus an element of H"(R") with 8 > 0 has 

almost everywhere convergent spherical partial sums of its inverse Fourier transform. 
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OTHER SPACES. 

In place of Euclidean spaces, we may consider eigenfunction expansions for Laplace-

Beltrami operators on other Riemannian manifolds. From the work of Kenig, Mityagin, 

Stanton, and Tomas [KST], we know that if p f. 2 and if the dimension of the man-

ifold is greater than one, then there are lJ' functions whose eigenfunction expansions 

diverge. However, for particular homogeneous spaces where we can add some symmetry 

hypotheses, we can still get convergence results. 

We have some results for the case of K-inva.ria.nt functions on 8L(2, R)/ 80(2} and 

the other noncompact connected rank-one Riemannian symmetric spaces. See [MP2] 

and [MP3]. Here we will outline a technique for dealing with hi-invariant elements of 

L2(8L(2, R)), similar to the device used in [MP2]. This depends on some results of 

Schindler [Sc] on asymptotics of Legendre functions. 

PRELIMINARY MATERIAL ABOUT 8L(2, R). 

Before stating the theorem described in [MP3], we present some background material 

on spherical functions on 8L(2, R). 

The group 8L(2, R) is often the testing ground for questions in analysis on non-

compact semisimple real Lie groups. In all that follows G will denote the noncompact 

semisimple Lie group 8L(2, R), consisting of 2 x 2 matrices with real entries and with 

determinant equal to 1. Inside G there is the compact subgroup K = 80(2), consisting 

of all orthogonal matrices in G, so that elements of K are matrices ·of the form 

k(fJ) = ( ~(9) sin(9)) .. 
- sm(9) cos(9) 

In addition to the subgroup K, there is the subgroup of diagonal elements of G with 

positive diagonal entries, 

A= {a(s) = (e•0/2 0 ) . e-•/2 . seR}. 
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This normalizes the subgroup 

In fact a(s)n(~)a(-s) = n(e'~) for ails and~ in R. As basic references for calculations 

on G, there is the survey article ofT. H. Koornwinder (K]. 

LEMMA 1 (CARTAN DECOMPOSITION). Each element x e G can be de-

composed into a product of the form x = k1ak2, with kt, k2 E K and a E A. If x :f: 1, 

then there are exactly two elements a, a' E A such that x E K aK and x E K a' K. The 

elements a, a' a.re inverses of each other, i.e. a' = a-1. 

The decomposition G = K AK is also called the polar decomposition, and is anal-

ogous to using polar coordinates in Euclidean space. We can equip K with normalized 

Lebesgue measure, so that 

L l(k) dk = 2~ 12
7r l(k(O)) d(J 

for all continuous functions I on K. Similarly, since A is isomorphic with the real line, 

it can also be equipped with Lebesgue measure. Let f1. denote Haar measure on G, 

normalized according to the following integral formula. 

LEMMA 2 (INTEGRATION FORMULA). For eve.zy compactly supported con-

tinuous function I on G, 

Consider the action of G on the upper half plane 1t = {z E C : Im(z) > 0}. 

H g E G is of the form g = (: :) and if z E 'H., then the action of g on z is 
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g · z = (az + b)f(cz +d) E 'H. In particular, N acts by translation parallel to the real 

axis (n(~) · z = z + ~) and A acts by dilations (a(8) · z = e•z). This shows that the 

action is transitive. K fixes the point i E 'H., which we will treat as the origin. Hence 'H. 

can be identified with the homogeneous space G f K, so that g · i is identified with the 

coset gK in GfK. 

Iff is a right-K-invariant function on G, then it can be identified with a function, 

J# on 'H. by assigning J#(g · i) = f(g), for all g E G_. Similarly, every function F on 

'H. is equivalent to a right-K-invariant function F" on G, with F"(g) = F(g · i), for 

all g E G. The set 'H. can be equipped with the Poincare metric d:l- = dx2 + dy2 fy2 , 

which is invariant under fractional linear transformations z 1-+ g · z. The corresponding 

G-invariant measure on 'H. is 

r f(x + iy) dx~y. 
J'H. y 

When 1i. is equipped the Poincare metric, it carries the Laplace-Beltrami operator 

and this is G-invariant. Clearly d acts on smooth right-K-invariant functions on G by 

forming df(g) = (df#)" (g). 

We now concentrate on analysis ofbi-K-invariant functions on G. From the Cartan 

decomposition, we see that iff satisfies J(k1gk2) = f(g) for' all k1, k2 E K and g E G, 

then f is completely determined by its restriction to {a(8) : 8 2: 0}. In particular, 

L f(g) dJJ.(g) = 211" l'>O f(a(8)) sinh(8) d8. (1) 

In addition, iff is bi-K-invariant then 8 1-+ f(a(8)) is an even function on the real 

line. Another interpretation of bi-K-invariant functions comes from viewing them as 

functions on 1i. with the property that F(k · z) = F(z) for all k E K and z E 1{.. In this 
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setting, they are "radial functions" on 'H., depending only on the distance from i with 

respect to the Poincare metric. When thinking in these terms, we then expect that 

there is an integral transform analogous to the Hankel transform of radial functions 

and coming from the eigenfunctions of the Laplace-Beltrami operator. The transform 

which plays this role is called the spherical transform. For an introduction to this 

theory, see the notes of Godement [GD]. The elementary spherical functions are radial 

eigenfunctions of ~. 

Definition. A continuous function cp on G is said to be an elementary spherical 

function if it satisfies the following three conditions: 

• cp(1) = 1; 

• cp is bi-K-invariant; 

• there is a complex number a such that ~cp = acp. 

These are given by Legendre functions on [0, oo). That is, 

cp~(a(s)) = 2~ fo2
1f (cosh(s) + sinh(s) cos(0))-(1/2)+i~ dO 

for all nonnegative numbers sand complex A, with ~cp~ = -(A2 + (1/4))cp~. 

The spherical transform of an integrable bi-K-invariant function I on G is 

:FI(A) = Ia l(g)cp~(g) dp.(g) = 211" loco l(a(s))cp~(a(s)) sinh(s) ds. 

In particular, there is the Plancherel formula for square-integrable bi-K-invariant func­

tions on G. For each p ~ 1, let KL'P(G)K denote the subspace of bi-K-invariant ele­

ments of V(G). There is a measure 11 on [0, oo) such that I 1-+ :FII[o,oo) extends from 

KL1(G)K nL2 (G) to be an isometry 
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The density for this measure is dv(..\) = ,.\ tanh(11" ..\) d..\j1r, and the inversion formula is 

1100 f(a(s)) =- .Ff(..\)rp.>,(a(s))..\ tanh(1r..\) d..\. 
11" () 

(2) 

When f is a. smooth, compactly supported bi-K-invariant function, this inversion for-

mula converges absolutely for all s ~ 0. 

THE PARTIAL SUMS. 

In [MP2] we proved the following theorem when G / K is a rank one, noncompact, 

connected Riemannian symmetric space. 

THEOREM 2. Suppose that f is in K L 2 ( G)K and that 

Mcf(9) =sup I {R :Ff(..\)rp>.(g) dv(..\)1 
R>l J1 

for all g in G. Then Me! is also in L2 (G) and there is a constant c > 0 which is 

independent of f such that 

In addition, 

f(g) = lim {R .Ff(A)cp.>.(!l) dv(>.) 
R->oo}0 

for almost every g in G. 

We will be dealing with asymptotic expansions involving terms of the form 

(x, y) ~--+ h(x, y) exp(ixy) 

where x E [a,b], 0:::; a< b < oo, andy~ 1. In addition, his C 1 on [a,b] x [l,oo) and 

we will have some control on it and its derivatives. We set up the maximal function 

Mhf(x) = sup I {R <:Id(y)h(x, y) exp(ixy) dyl 
R>l J1 
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for x E (a, b]. The transform "311 of an element I E .D'(R) is locally integrable and so 

we can carry out an integration by parts on the integral on the right hand side. That is 

1R "31l(y)h(x, y) expixydy 

= -1R (18 
"31l(y)exp(ixy)dy) : 8 h(x,S)d8 

+ h(x, R) 1R "Jtf(y) exp(ixy) dy. 

Taking absolute values of this, we find that it is bounded above by 

This final upper bound will be in .D'(a, b) provided 

is uniformly bounded on [a, b] x (1, oo). 

LEMMA 3. Suppose that (a, b] is an interval in [0, oo) and that h is a 0 1 function on 

(a, b] x [1, oo). FUrthermore, take 1 < p ~ 2 and assume that there is a positive constant 

{:J sucb that 

sup foo~~.h(x,y)ldy~fJ and sup suplh(x,R)I~f:J. 
o~z~bJl vy o~z~bR~l 

Then for all IE .D'(R) the maximal function Mhl is in .D'(a, b) and 

Note. A similar argument works with weighted .D'-spaces which are A, spaces on 

ac~unt of the result of Hunt and Young (H¥] 
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THE SPHERICAL TRANSFORM CASE. 

We saw earlier that the spherical transform :F maps functions in K L2 ( G)K to functions 

in £ 2 ([0, oo), v), and is an isomorphism. We put 

k(t, A)= lA tanh(7rA)I 112 (sinh(t)) 112 rp~(a(t)), (3) 

where t and A are positive real numbers. This method of changing the special functions 

is used by Gilbert in [G). Furthermore, starting with a bi-K-invariant function f on G 

we set up 

V f(t) = (sinh(t))112 f(a(t)), t > 0. 

LEMMA 4. A bi-K-invariant function f on G is in K L 2(G)K if and only if V f E 

£ 2 (0, oo). FUrthermore, there is a constant c depending only on the normalization of 

Haar measure on G such that IIV /ll2 = cll/112· 

IfF is an integrable function on (0, oo) with respect to sinh(t)112 dt, we write 

KF(A) = 100 F(t)k(t, A) dt. 

In particular, when f is an element of KL1(G)K its spherical transform is 

and the partial sums of the inverse are 

R R ' 1 KV j(A)k(t, A) dA = (sinh(t))1121 :F j(A)rp>.(a(t))A tanh(7r A) dA. 

Therefore, to prove Theorem 2 it suffices to prove that V f e L2 (0, oo) implies that the 

partial sums 

{1R KVf(A)k(t,A)dA : R > 1} 
converge as R -+ oo for almost every t > 0. 
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SCHINDLER'S ASYMPTOTIC FORMULAE. 

Schindler's paper [Sc) contains the asymptotic properties of k(t, >.) in a form which we 

can use. The important cases are when A ;::: 1. The function k(t, A) is the special case 

of Km(x, y) in [Sc], with m = 0, A = x, and t = y. Now assume that A > 1 and t > 1. 

Hence, we want to first control the convergence away from the origin. For these values 

of A and t Schindler has shown that: 

where 

and 

k(t, A) =~cos(t>.- (n/4)) + ~ 8~ coth(t) sin(t>..- (7r/4)) 

+ cos(t>..- (?r/4)) { 81(>..) + e~!~)l} 

+ sin(t>..- (7r/4)) { 82(>..) + e~~~)l} 

+ cos(t>..- (7r/4))Dt(t, >..) + sin(t>.- (7r/4))D2(t, ..\), 

Next we consider 0 < t < 1 and..\> 1. In this range Schindler has shown that 

k(t, >..) = (tA) 112 Jo(tA) + t/>1 (t)t312 ..\ -l/2 J1(t:>..) + Fo(A., t) 

where 

1/2- { 0 (..\-3/2t5/2), 
Fo(A, t) = (t)..) ko(:>..)Jo(tA.) + 0 (>..-2t2), 

t/>1 (t) = 0(1) and k0 (..\) = 0(>.. - 2). 

(4) 

(5) 

(6) 

(7) 

(8) 
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THE £ 2-CASE. 

The operator K which we have just defined, extends from L1 n£2 to become an isometry 

of L2 to L2 • There is also the Plancherel formula for cosine transforms. 

LEMMA 5. There is a constant c2 > 0 such that for evezy F is in L2 (0, oo) there is an 

even function TF E L2(R) whose Fourier transform ~t(TF) satisfies ~t(TF)i{o,oo) = 

Start with a function f E K L 2 (G)K and consider 

lR KVJ(>..)k(t,>..)d>.. = lR ~t(TVf)(>..)k(t,>..)d>... (9) 

Suppose that t > 1, R > 1, and expand the right hand side using equation ( 4) above. 

We find that 

sup I (R KV f(>..)k(t, >..) d>..l 
R>l J1 

is bounded by a sum of terms of the form: 

sup I (R ~t(TVJ)(>..)e±i>.td>..l 
R>l lt 

coth(t) sup I (R ~~(TV/)(>..) e±i-\t d>..l ; 
R>l lt A 

sup I (R ~t(TV f)(>..)S;(>..)e±i>.t d>..l 
R>l J1 

~1 sup I fR ~t(TVJ)(>..)T;(>..)e±i>.t d>..l; 
e - R>l lt 

and 

sup I fR ~(TV f)(>..)e±i>.t D;(t, >..)d). I· 
R>l lt 

Apply Lemma 3 to each of these pieces, using the estimates given in (5) and (6) to 

verify the hypotheses used there. From this we conclude that if f e K L2 ( G)K then 

t 1-+ sup I fR KV f(>..)k(t, >..) d>..l , t > 1, 
R>l J1 

(10) 

is in £ 2(1, oo) and its norm there is dominated by a constant multiple of the £ 2(0, oo) 

normofVJ. 
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To handle the case of 0 < t < 1 we use the same device with expansion (7). That 

is, our hypothesis is that KVJ is in L 2 (0,oo), and so 

x f-+ lxl-("-l)/2 KV f(!xl) 

is in L2(R"radial for each n;::: 1. Let T,..(Vf) be the element of L2(Rnradial with 

~ .. (Tn(Vf))(ixl) = !xr(n-l)I2KVJ(Ixl), a.e. x E R" 

The maximal function 

t f-+ sup llR KV f(A.)k(t, J.) d.>. I, 0 < t < 1, 
R>l 1 

is hence dominated by the sum of: 

sup I {R KV f(J.)(t>..) 112 Jo(tJ..) d>..l 
R>l 11 

and 

sup I rR KV f(>..)Fo(>.., t) d), I· 
R>l 11 

The first term is dominated by a constant multiple of 

(11) 

where e is an arbitrary unit vector in R 2 , and the Kanjin-Prestini Theorem implies that 

this is in L2 (0, 1) as a function oft. Similarly, the second integral is 

and we can apply the Kanjin-Prestini Theorem again. 
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In dealing with the cases of the last integral we need to remember that we are 

assuming .>. ;?: 1 and 0 < t < 1. Therefore, the remainder term is bounded by 

which is bounded by 

and this is square-integrable on [0, 1]. 

The only term that we still have to treat is 

and thi.s is handled in the same manner as the second term, using a variant of Lemma 

3 for Hankel transforms. 

Note. For p < 2 and f E K LP(G)K the situation is more complicated since spherical 

transforms of functions in this space are analytic on a strip surrounding the real axis 

(see [ST]) and so the partial sums cannot belong to K LP(G)K. See also the comments 

by Giulini and Mauceri in [GM]. Despite this, we have the following analogue of the 

two-dimensional Euclidean case. 

THEOREM 3. IfG = SL(2,R), K = 80(2), 4/3 < p ::52, and f E KL2 (G)K with 

then Me! E L2 (G) +£'I'( G) and 

Notes. The control on the maximal function in Theorem 3, combined with the ev-

erywhere convergence of the inverse spherical transforms of test functions, is enough 
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to guarantee the almost everywhere convergence of the inverse spherical transforms of 

elements of K LP(G)K with 4/3 < p ::; 2. Colzani and Vignati [CV] dealt with the 

case of SL(3, R) using an equiconvergence argument. At this stage we do not know 

if Theorem 3 can be extended to LP spaces of other noncompact rank one symmetric 

spaces for any p f 2. Another unsolved problem i.s whether or not there is an analogue 

of Theorem 1 for the K -finite elements of L2 (SL(2, R) / 80(2)). 
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