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DIFFERENTIABILITY PROPERTIES OF BANACH SPACES 
WHERE THE BOUNDARY OF THE CLOSED UNIT BALL HAS 

DENTING POINT PROPERTIES 

John R. Giles and Warren B. Moors 

It was Collier, [2] who showed that for a Banach space with the Radon-Nikodym 

Property, a continuous convex function on an open convex domain in the dual space is 

Frechet differentiable on a dense Ga subset of its domain provided that the set of points 

where the function has a weak * continuous subgradient. is dense in its domain. The 

separable Banach space c0 does not have the Radon-Nikodym Property and the norm of its 

dual ..e 1 is nowhere Frechet differentiable, [11, p.80]. Nevertheless, it has recently been 

shown that a large class of Banach spaces which includes the weakly compactly generated 

spaces do have comparable differentiability properties to those of Banach spaces with the 

Radon-Nikodym Property. Kenderov and Giles, [7, Theorem 3.5], showed that for a 

Banach space which can be equivalently renormed so that every point on the boundary of the 

closed unit ball is a denting point, a continuous convex function on an open convex domain 

in the dual space, is Frechet differentiable on a dense Ga subset of its domain provided that 

the set of points where the function has a weak * continuous subgradient is residual in its 

domain. 

This result was extended by the authors using a generalisation of the notion of 

denting point, firstly by Kuratowski's index of non-compactness, [5, Theorem 4.5] and 

secondly by de Blasi's weak index of non-compactness, [6, Theorem 4.3]. Generalising the 

notion of denting point by an index of non-separability, Moors made a further extension, 

[9, Theorem 5.6]. 

In this paper we introduce yet another generalisation of the notion of denting point by 

an index more general than those so far introduced. We present the Kenderov and Giles 

theorem in the most general form given so far, and one which includes all the earlier 

extensions. 
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We consider a Banach space X over the real numbers with dual X*. We denote by 

B(X) the closed unit ball, { x EX: II x II =:::: 1 } and by S(X) the unit sphere, { x EX: II x II = 1 } . 

For a bounded set E in X, 

the Kuratowski index of non-compactness of E is 

a(E) = inf { r : E is covered by a finite family of sets of diameter less than r}, [8] 

the de Blasi weak index of non-compactness of E is 

ro(E) = inf {r: there exists a weakly compact set C such that E C C+rB(X) }, [4] 

the index of non-separability of E is 

~(E) = inf { r : E is covered by a countable family of balls of radius less than r}, [9] 

and the index of non-WCG of E is 

)'(E) = inf { r : there exists a countable family of weakly compact sets { C0 } such that 

E C U Cn +rB(X)} , [10] . 
1 

All of these indices have the following properties: 

(i) If E C F then the index of E ::,; the index ofF, 

- -
(ii) the index of E = the index of E, where E denotes the closure of E, 

(iii) the index of kE = I k I times the index of E, for all real k, 

(iv) the index of E =the index of co E, where co E denotes the convex hull of E. 

Further, 

a(E) = 0 if and only if E is relatively compact, 

ro(E) = 0 if and only if E is relatively weakly compact, 

~(E) = 0 if and only if E is separable, 

'Y(E) = 0 if and only if a countable union of weakly compact sets is dense in E. 

The closed convex hull of a weakly compact set is also weakly compact, [3, p.68]. 

So we could assume the weakly compact sets in the definitions of the ro andy indices to be 

convex without altering the value of the index and for convenience we will do so. 
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Given a continuous convex function <!> on an open convex subset A of a Banach space 

"' · F .~ h d'.f+. · bl A "f ·· <j>(x+ty)- <jl(x) · d · X, we say that '+' 1s re:c et l.JJerentla eat x e 1 l1m t ex1sts an 1s 
t-tO 

approached uniformly for all y e S(X). A sub gradient of <1> at xo e A is a continuous linear 

functional f on X such that f(x-xo) :;;; cj>(x)- cj>(XQ) for all x eA. The subdifferential of cp at 

xo E A is denoted by d<jl(xo) and is the set of subgradients at xo. The subdifferential mapping 

x-t d<jl(x) is a set-valued mapping from A into subsets of X*. Now $ is Frechet 

differentiable at x e A if and only if the subdifferential mapping x -t d<jJ(x) is single-valued 

and norm upper semi-continuous at x, [11, p.18). 

A set-'-valued mapping <I> from a topological space A into subsets of the dual X* of a 

Banach space X is said to be weak * upper semi-continuous at t e A if, given a weak * open 

subset W containing <l>(t) there exists an open neighbourhood U oft such that <I>(U) C W. 

<b is called a weak * cusco if <b is upper semi-continuous on A and <I>(t) is weak * compact 

and convex for all t e A. A weak * cusco <I> is said to be minimal if its graph does not 

contain the graph of any other weak * cusco with the same domain. 

Now given a continuous convex function $ on an open convex subset A of a Banach 

space X, the subdifferential mapping x -t dljl(x) is a minimal weak * cusco from A into 

subsets of X*, [11, p.lOO]. Our required differentiability property for continuous convex 

functions is a consequence of our establishing a corresponding single-valued and norm 

upper semi-continuity property for minimal weak * cuscos. Further, the proof of the more 

general result reveals the essential ingredients of the situation without adding any 

complication. 

For a Banach space X, given r > 0, a slice of the ball rB(X) determined by f e S(X*) 

is a subset of rB(X) of the form S(rB(X), f, 8) = { x e rB(X) : f(x) > r- 8} for some 

II. II. 
0 < o < r. A slice of the ball rB(X*) determined by x e S(X) is called a weak * slice of 

rB(X*). 

We need the following properties of minimal weak * cuscos. 
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Lemma 

Consider a minimal weak* cusco cl> from a topological space A into subsets of X*, 

the dual of a Banach space X. 

a. (i) For any open set V in A and weak * closed convex set Kin X* where 

cl>(V) 1;;. K, there exists a non-empty open subset V' ofV such that 

cl>(V') n K = 0. 

(ii) Further, if for each open subset U in A we have cl>(U) 1;;. K, then the set 

{teA : cl>(t) n K = 0} is a dense open subset of A. 

b. Suppose further that A a Baire space. 

Proof 

(i) There exists a dense Ga subset D of A such that at each teD, the mapping 

p(t) = inf {II f II: f ecl>(t)} 

is continuous and cl>(t) lies in the face of a sphere of X* of radius p(t). 

(ii) Given to e D and fo e cl>(to), andy e S(X) and() > 0 such that 
A A 

foe S(p(to) B(X*), y, <5), and 1 <A< 2 such that foe AS(p(to) B(X*), y, <5) 

then in any neighbourhood V of to there exists a non-empty open subset U of 
A 

V such that «l>(U) c AS(p(to) B(X*), y, <5). 

a.(i) is proved contrapositively in [7, Lemma 3.4(i) ]. 

a.(ii) is a simple consequence of a.(i) and is proved more generally in [9, Lemma 3.3]. 

b.(i) is proved in [7, Lemma 3.4(iii)]. 

b.(ii). Since fo belongs to the open slice S(p(to) B(X*), y, <5) we can always choose 

A 
1 < A< 2 such that foe AS(p(to) B(X*), y, <5). Since p is continuous at to. there exists an 

open neighbourhood V of to such that cl>(t) n A.p(to) B(X*) :F: 0 for each t e V. 

So by a.(i), cl>(V) c AP(to) B(X*). Again by a.(i), there exists a non-empty open subset U 

A 
of V such that cl>(U) C AS(p(to) B(X*), y, <5). II 
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Given a Banach space X and r > 0, we say that x e rS(X) is a denting point, 

(a denting point, w denting point, f3 denting point, r denting point) of rB(X) if given e > 0, 

x is contained in a slice of rB(X) of diameter (a. index, ro index, ~ index, "(index) less 

than£. 

We note that every fmite dimensional Banach space X has every point of S(X) an 

a. denting point of B(X), every reflexive Banach space X has every point of S(X) an 

ro denting point of B(X), every separable Banach space X has every point of S(X) a 

~ denting point of B(X) and every weakly compactly generated Banach space X has every 

point of S(X) a"( denting point of B(X). 

It is evident then that index denting points unlike real denting points, have little to do 

with the geometry of the ball of the space. In a fmite dimensional Banach space X, although 

every point of S(X) is an index denting point, it is possible to have a closed unit ball B(X) 

where the real denting points are not dense in S(X). 

It is also clear that a denting point is an a. denting point, an a. denting point is both an 

ro denting point and a ~ denting point and ro denting points and ~ denting points are "(denting 

points. So in proving our Theorem for the case where every point of the unit sphere is a 

"( denting point of the closed unit ball we include the cases where every point of the unit 

sphere is a usual or other index denting point of the closed unit ball. 

Theorem 

Consider a Banach space X which can be equivalently renormed to have every point of 

S(X) a"( denting point ofB(X). Then every minimal weak * cusco <I> from a Baire space A into 
1\ 

subsets of X** for which the set G = { t e A : <l>(t) n X ::1: 0} is residual in A, is single-valued 

and norm upper semi-continuous on a dense G0 subset of A. In particular, every continuous 
1\ 

convex function cp on an open convex set A in X* for which the set G = { f e A : ()cp(f) n X ::1: 0} 

is residual in A, is Frechet differentiable on a dense G0 subset of A. 
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Proof 

Consider X so renormed. For each n eN, denote by Un the union of all open sets U 

in A such that diam cl>(U) < ~ . For each n eN, U0 is open; we show that Un is dense in A. 

From Lemma b.(i) there exists a dense G5 subset G1 of A where p is continuous and 

for each t e G1, cl>(t) lies in the face of a sphere of X** of radius p(t). Now G (") G1 is 

residual in A. Consider any non-empty open set E in A and to e G (") G1 (")E. Then there 

1\ 1\ 
exists some xo e cl>(to) (")X. lfxo = 0, then since pis continuous at to• given n eN there 

exists an open neighbourhood U of to such that cl>(t) (") ~ B(X**) ::1: 0 for all t e U. Then by 

Lemma a.(i), cl>(U) C ~ B(X**) so diam cl>(U) < ~ . If xo ::1: 0, then xo is a y denting point of 

p(to) B(X). So there exists a g e S(X*) and() > 0 such that xo e S(p(to) B(X), g, S) 

andy{ S(p(t0) B(X), g, ())) < 8~ . We can choose 1 <A.< 2 such that 

xo e A.S(p(to) B(X), g, 8) and then by index property (iii), 'Y( A.S(p(to) B(X), g, S)) < Jn . 

1\ 1\ 
Now xo e A.S(p(to) B(X**), g, S) so by Lemma b.(ii) there exists a non-empty open subset 

W ofE such that cl>(W) c A.S(p(to) B(X**), g, S). Since y(A.S(p(to) B(X), g, 8)) < 4~ 

there exists a sequence { Cd of weakly compact convex sets in X such that 
00 1 

A.S(p(to) B(X), g, S) C U Ck + -4 B(X) . 
k=l n 

We now prove that there exists a non-empty open subset V ofW such that 

1 1\ 1 
co( cl>(V)) < 4n. Now if cl>(V') c C1 + 4n B(X**) for some non-empty open subset V' of 

W, write V = V', but if not then by Lemma a.(ii) there exists a dense open set 01 £ W such 

~ 1 1\ 1 
that cl>(01) (") ~C1 + 4n B(X**)) = 0. Now if cl>(V') c C2 + 4n B(X**) for some non-

empty open subset V' ofW, write V = V', but if not then by Lemma a.(ii) there exists a 

dense open set 02 c W such that cl>(OV (") (c2 + 4~ B(X**) = 0. Continuing in this way 
00 

we will have defined V at some stage, because if not, 000 = n Ok is a dense G, subset of 
k=1 u 
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Wand <l>(Ooo) n U Ck + 4n B(X**) = 0. However, for any t e Ooo n G n W we ( 

00 
A 1 J 

k=l / 

(OOA 1 A) 
have <P(t) n ~ ~~ Ck + 4n B(X) * 0 So we conclude that W contains a non-empty 

open set V with ro(<P(V)) < 41n. 

We. now prove that there exists a non-empty open subset U of V such that 

diam <!>(U) < ~. Now there exists a minimal convex weakly compact set Cm such that 

<!>(V) c ~+in B(X**), [6, Lemma 2.2]. We may assume that diam Cm;;:: in. Since 

A 
Cm is weakly compact and convex there exists an n:' e S(X***) and an l5 > 0 such that 

A 1 A A 
diam S(Cm, n:', l5) < ln, [1, p.199]. Now K = Cm \ S(Cm, ::T, o) is non-empty weakly 

compact and convex and so it is weak * closed and convex. But K + in B(X**) is also 

weak * closed and convex. Since Cm is minimal, <ll(V) g;_ K + in B(X**). Since <l> is a 

minimal weak * cusco it follows from Lemma a.(i) that there exists a non-empty open subset 

U of V such that 

<l>(U) c (Cm + 4~ B(X**)) \ (K + 41n B(X**)) .£ S(Cm, n:', o) + 4~ B(X**). 

So diam <l>(U) < ~ . 

We conclude that for each n eN, En Un * 0; that is, Un is dense in A. So <ll is 
00 

single-valued and norm upper semi-<:ontinuous on the dense G subset n Un in A. 
0 1 

The subdifferential mapping f -t d<jl(f) of a continuous convex function <jl on an open 

convex subset A of X* is a minimal weak * cusco from the Baire space A into subsets of 

X**. So if ¢l obeys the residuality condition we conclude that ¢l is Frechet differentiable on a 

dense 0 0 subset of A. II 

We should note that the Banach space ,.e 1Cr) has the property that every point of 

S(l 1) is an a. denting point of B(1 1), [5, example after Theorem 3.7] but when r is 

uncountable, l1(f) is not weakly compactly generated. 
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Troyanski, [12, p.306] showed that a Banach space which can be equivalently 

renonned so that every point of the boundary of the closed unit baH is a denting point, can be 

equivalently renonned to be locally uniformly rotund. It is an open question whether a 

Banach space which can be equivalently renonned to have every point of the boundary of the 

closed unit ball an a denting point, ( ro denting point, ~ denting point, y denting point) can be 

equivalently renonned to be locally uniformly rotund. If it is so for y denting points then our 

general Theorem does not advance our knowledge beyond the Kenderov and Giles Theorem. 

However, the renorming result already given by Troyanski is rather technical and uses 

probability techniques. An extension of his result could be quite difficult to achieve. A 

Banach space with the Radon Nikodym Property possesses the differentiability properties of 

our Theorem, but it has been an outstanding problem for some time to determine whether 

such a space can be equivalently renonned to be locally uniformly rotund: 

The significant research question raised by our Theorem is as follows: 

Characterise the class of Banach spaces where every continuous convex function on an open 

convex subset of the dual possessing a weak * continuous sub gradient at points of a residual 

subset of its domain, is Frechet differentiable on a dense 0 0 subset of its rkimain. 
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