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1 Introduction
In this paper we want to study non-convolution type singular integrals of the
form

(Tf)(u) =

∫

RN

K(u, v)f(v)dv (1.1)

(see e.g. [19, 20]). Inspired by the famous T (1) theorem of G. David and
J.-L. Journé [4, 5] on the L2 boundedness of operators (1.1) T. Figiel [8]
has proved a T (1) theorem for X-valued Lp functions, where X has the
UMD-property. The kernels K are still scalar valued, however. Recently
T. Hytönen and L. Weis [13] gave a new proof of Figiel’s T (1) theorem and
extended it to operator-valued kernels K.

On the other hand, various authors (e.g. [9, 11, 18, 21, 23]) obtained
results of the same spirit as the T (1) theorem of David and Journé for
other scalar-valued function spaces, including homogeneous Besov, Triebel-
Lizorkin and Riesz potential spaces. In [12] T. Hytönen and the author give
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a new prove of the T (1) theorem for Triebel-Lizorkin spaces, using meth-
ods from [13]. And in [15] we show an operator-valued version of the T (1)
theorem for vector-valued Besov spaces.

In this paper, we prove the following operator-valued T (1) theorem for
vector-valued Riesz potential spaces. The definition of these spaces, as well
as of the various conditions appearing in the theorem, are given in Section
2. The theorem is then proved in Section 3.

Theorem 1.1. Let X, Y be UMD spaces. Suppose that T : S(RN) →
S′(RN , L(X, Y )) is in the class RCZOν for some ν ∈ (0, 1], satisfies the
weak R-boundedness property, and T (1) = 0.

(a) T extends to a bounded linear operator from Ḣs
p(X) to Ḣs

p(Y ) for each
s ∈ (0, ν) and each p ∈ (1,∞).

(b) If in addition T ′ ∈ RCZOν and T ′(1) = 0, then T extends to a bounded
linear operator from Ḣs

p(X) to Ḣs
p(Y ) for each |s| < ν and each p ∈ (1,∞).

Theorem 1.1 contains the Lp result by Hytönen and Weis from [13] as
a special case (s = 0). However, we use a weaker version of the weak R-
boundedness property, which slightly improves their theorem.

2 Definitions and Notations
Throughout this paper X and Y are complex Banach spaces. The space
L(X, Y ) of bounded linear operators from X to Y is endowed with the uni-
form operator topology. X ′ = L(X, C) denotes the dual space of X. All our
(possibly vector-valued) functions and distributions will be defined on RN for
a fixed positive integer N . Therefore the various function spaces E(RN , X)
in this paper are denoted simply by E(X). For example we write Lp(X) for
the Bochner-Lebesgue space Lp(RN , X), p ∈ [1,∞], equipped with its usual
norm.

N := {0, 1, 2, . . . } is the set of all nonnegative integers. The conjugate
exponent p′ of p ∈ [1,∞] is given by 1

p + 1
p′ = 1.

We write D(RN , X) for the space of all compactly supported smooth func-
tions with values in X. The Schwartz class S(RN , X) is the space of all X-
valued rapidly decreasing smooth functions, endowed with its usual topology.
For D(RN , C) and S(RN , C) we also write D(RN) and S(RN) respectively.
The space S′(RN , X) of all X-valued tempered distributions is defined as the
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space of all continuous linear operators from S(RN) to X. The Fourier trans-
form F : S(RN) → S(RN) is defined by (Fϕ)(u) = ϕ̂(u) =

∫
RN e−iuvϕ(v)dv.

Let Z(RN , X) be the space of all Schwartz functions ϕ ∈ S(RN , X) such
that Dαϕ̂(0) = 0 for all multiindices α ∈ NN . Then Z(RN , X) is a closed
subspace of S(RN , X). If Z′(RN , X) denotes the space of all continuous linear
operators from Z(RN) = Z(RN , C) to X, then S′(RN , X)/P(RN , X) and
Z′(RN , X) are isomorphic (cf. [22, 5.1.2] and [14, Section 7]). Here P(RN , X)
stands for the space of all polynomials on RN with coefficients in X.

Riesz potential spaces
Let p ∈ (1,∞) and s ∈ R. The Riesz potential spaces Ḣs

p(X) = Ḣs
p(Rn, X)

is the space consisting of all f ∈ Z′(RN , X) such that

‖f‖Ḣs
p(X) = ‖F−1(| · |sf̂(·))‖Lp(X)

is finite. Note that F−1(|·|sf̂(·)) maps Z′(RN , X) onto itself and that ‖·‖Ḣs
p(X)

is a norm on Ḣs
p(X).

Let φ̂ ∈ D(RN) be radial, equal to 1 in B(0, 1), and supported in B(0, 2).
Let ϕ̂ = φ̂− φ̂(2·) and ϕ̂j = ϕ̂(2j·), j ∈ Z. It follows from the results in [16]
that, if p ∈ (1,∞) and X is a UMD space (for a definition see below), then

∥∥f
∥∥

Ḟ s,p
2 (X)

:=

(∫ 1

0

∥∥∥
∑

j∈Z
rj(t)2

−jsf ∗ ϕj

∥∥∥
2

Lp(X)
dt

)1/2

.

is an equivalent norm on Ḣs
p(X). Here (rj) is some sequence of distinct

Rademacher functions.

The operator T

We consider a continuous linear operator

T : S(RN) → S′(RN , L(X, Y )).

T can be identified with the continuous bilinear form

S(RN)× S(RN) → L(X,Y ), (ϕ, ψ) (→ (Tϕ)(ψ).
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In place of (Tϕ)ψ we also use the notation
〈
ψ, Tϕ

〉
. To T we assign an

“adjoint” operator

T ′ : S(RN) → S′(RN , L(Y ′, X ′)),
〈
ψ, T ′ϕ

〉
:=

〈
ϕ, Tψ

〉′
,

where the latter ′ designates the usual Banach adjoint of an operator in
L(X, Y ).

From T we derive a linear mapping T̃ : S(RN) ⊗ X → S′(RN , Y ) : for
x ∈ X and ϕ, ψ ∈ S(RN), we let

〈
ψ, T̃ [ϕ⊗ x]

〉
:=

〈
ψ, Tϕ

〉
x ∈ Y.

This makes sense, since
〈
ψ, Tϕ

〉
∈ L(X, Y ). So T̃ [ϕ ⊗ x] is a Y -valued

tempered distribution and T̃ is well-defined on S(RN)×X. Now we extend
T̃ to S(RN)⊗X by linearity. In the following we will not distinguish between
T and T̃ .

The associated kernel
Suppose now that K : {(u, v) ∈ RN ×RN : u *= v} → L(X, Y ) is continuous.
We say that T is associated with K if

〈
ϕ, Tφ

〉
=

∫

RN

ϕ(u)

∫

RN

K(u, v)φ(v)dv du (2.1)

holds for all ϕ, φ ∈ D(RN) with suppϕ ∩ suppφ = Ø. This means that,
for each φ ∈ D(RN), the distribution Tφ agrees almost everywhere on the
complement of suppφ with the continuous function

∫
RN K(·, v)φ(v)dv, defined

on the complement of suppφ. It is clear from (2.1) that T ′ is associated to
K ′ given by K ′(u, v) = K(v, u)′ for u *= v.

Now we assume that K satisfies the standard estimates

(SE0) sup
{
|u− v|N

∥∥K(u, v)
∥∥ : u *= v

}
< ∞,

(SEν) sup

{
|u− v|N+ν ‖K(u, v)−K(u0, v)‖

|u− u0|ν
: |u− v| > 2|u−u0| > 0

}
<

∞.

for some ν ∈ (0, 1]. We say that T ∈ CZOν if T is associated with K satisfying
(SE0) and (SEν). Note that T ∈ CZOν does not emply that T ′ ∈ CZOν .
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Definition of T (1)

The action of T ∈ CZOν is not a priori defined on the constant function
1 /∈ S(RN), but we can make sense of the notion T (1): We will define T (1)
as a linear operator acting on

D0(RN) := {ϕ ∈ D(RN) :

∫

RN

ϕ(u)du = 0}.

For doing this we first observe that, if ϕ ∈ D0(RN), the distribution T ′ϕ
agrees with an integrable function on the exterior of any neighborhood of
suppϕ. Now choose ψ ∈ D(RN) such that ψ ≡ 1 in a neighborhood of suppϕ
and define

〈
1, T ′ϕ

〉
:=

〈
ψ, T ′ϕ

〉
+

∫

RN

(1− ψ(u))(T ′ϕ)(u)du.

Here the first term is given by the usual pairing between test functions and
distributions and the second term exists because T ′ϕ is integrable on the
support of 1 − ψ. One can show that the value of

〈
1, T ′ϕ

〉
is independent

of the actual choice of ψ. Now we make the natural definition
〈
ϕ, T (1)

〉
:=〈

1, T ′ϕ
〉′∣∣

X
∈ L(X, Y ).

The weak boundedness property
The closed ball with center u ∈ RN and radius r > 0 is denoted by B(u, r).
We say that ϕ is a normalized bump function associated with the unit ball
B(0, 1) if ϕ ∈ D(RN) with suppϕ ⊆ B(0, 1) and ‖Dαϕ‖L∞ ≤ 1 for all
|α| ≤ M , where M is a large fixed number. φ is a normalized bump function
associated with the ball B(u, r) if φ(·) = r−Nϕ(r−1(· − u)), where ϕ is a
normalized bump function associated with the unit ball.

The operator T is said to have

• the weak boundedness property provided that, for every pair of nor-
malized bump functions ϕ, φ associated with any ball B(u, r) we have∥∥〈

φ, Tϕ
〉∥∥ ≤ Cr−N .

• the weak boundedness property at 0 provided that, for every pair of
normalized bump functions ϕ, φ associated with any ball B(0, r) we
have

∥∥〈
φ, Tϕ

〉∥∥ ≤ Cr−N .
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The following lemma is a refinement of an auxiliary result in [13, Sect. 2].
For a proof see [15].

Lemma 2.1. Let k ∈ N, a > 0, w ∈ RN , and let ϕ, φ ∈ D0(RN) be normal-
ized bump functions associated with B(0, a) and B(w, 2ka) respectively. Let
T ∈ CZOν satisfy the weak boundedness property at 0.
(a) There is a constant C1 < ∞ such that

∥∥〈
φ, Tϕ

〉∥∥ ≤ C1
1 + k

(a2k)N

(
1 +

|w|
a2k

)−N−ν

.

(b) If in addition T (1) = 0, then there are constants C2 < ∞ and δ > 0 such
that

∥∥〈
ϕ, Tφ

〉∥∥ ≤ C2(a2k)−N−ν

(
1 +

|w|
a2k

)−N−δ

.

Notions from Banach space theory
For our result on Riesz potential spaces we will restrict ourselves to Ba-
nach spaces that have a certain geometric property, namely the property
of Unconditional Martingale Differences (UMD). There are several equiva-
lent definitions for this property (see [2, p.141-142] and the references given
there). Here is one of them:

Definition 2.1. A Banach space X is a UMD space if and only if the Hilbert
transform

(Hf)(u) = PV −
∫

f(v)

u− v
dv, f ∈ S(R, X),

extends to a bounded linear operator on Lp(R, X) for some (and thus for
each) p ∈ (1,∞).

Remark 2.1. (a) It is clear from the definition that each Hilbert space is a
UMD space. The dual space and each closed subspace of a UMD space is a
UMD space. A UMD space X always has a uniformly convex renorming [1]
and therefore is super-reflexive [7]. In particular, '1 is not finitely repre-
sentable in X. Hence X is B-convex [6, Theorem 13.6].
(b) Let (Ω, Σ, µ) be a σ-finite measure space. If X is a UMD space and
p ∈ (1,∞), then Lp(Ω, µ,X) is also a UMD space [2, p.145].

Next we recall the notion of R-boundedness.
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Definition 2.2. Let X, Y be Banach spaces. A set of operators τ ⊆ L(X, Y )
is called R-bounded if there is a constant C < ∞ such that for all m ∈ N, all
T1, . . . , Tm ∈ τ and all x1, . . . xm ∈ X we have that

∥∥∥
m∑

k=1

rkTkxk

∥∥∥
L2([0,1],Y )

≤ C
∥∥∥

m∑

k=1

rkxk

∥∥∥
L2([0,1],X)

, (2.2)

where rk is the k-th Rademacher function on [0, 1]. The infimum over all C
such that (2.2) holds is called the R-bound of τ and is denoted by R(τ).

It is clear from the definition that R-boundedness implies uniform bound-
edness. But in general the notion of R-boundedness is stronger than that of
uniform boundedness. In fact, G. Pisier proved that every bounded subset of
L(X) is R-bounded if and only if X is isomorphic to a Hilbert space (cf. [3]).
But R-boundedness is equivalent to uniform boundedness between the so
called Rademacher spaces, which we define now.

Definition 2.3. For a Banach space X, the Rademacher space RadX is
the closure in L2([0, 1], X) of the subspace of all finite linear combinations∑m

k=1 rkxk, where rk are Rademacher functions and xk are elements of X.

For T1, . . . , Tm ∈ L(X, Y ), the operator [Tk]mk=1 : RadX → RadY is
defined by

[Tk]
m
k=1 :

m∑

k=1

rkxk (→
m∑

k=1

rkTkxk.

With this definition it is immediate that τ ⊆ L(X, Y ) is R-bounded if
and only if {[Tk]mk=1 : m ∈ Z+, T1, . . . , Tm ∈ τ} is a bounded subset of
L(RadX, RadY ).

Proposition 2.1. [17, Proposition 3.5] Let τ be a R-bounded subset of L(X, Y ).
If X is B-convex, then {T ′ : T ∈ τ} ⊆ L(Y ′, X ′) is R-bounded.

In particular, if X and Y are UMD spaces, then τ ⊆ L(X, Y ) is R-
bounded if and only if {T ′ : T ∈ τ} ⊆ L(Y ′, X ′) is R-bounded.

The class RCZOν

For a kernel K : {(u, v) ∈ RN × RN : u *= v} → L(X, Y ) and a real number
ν ∈ (0, 1] we consider the standard R-estimates
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(SRE0) R
({

|u− v|N
∥∥K(u, v)

∥∥ : u *= v
})

< ∞,

(SREν) R

({
|u−v|N+ν ‖K(u, v)−K(u0, v)‖

|u− u0|ν
: |u−v| > 2|u−u0| > 0

})
<

∞.

We say that T ∈ RCZOν if T is associated with K satisfying (SRE0) and
(SREν).

It is clear from the definition that the class RCZOν is contained in CZOν .
If X, Y are Hilbert spaces then the two classes coincide.

The weak R-boundedness property
For r > 0 and w ∈ RN we define the dilation and translation operators on
S(RN) by

δrϕ = r−N/2ϕ(r−1·), τwϕ = ϕ(· − w).

Moreover we define the continuous linear operator T r
w : S(RN) → S′(RN , L(X, Y ))

by 〈
φ, T r

wϕ
〉

=
〈
τwδrφ, T [τwδrϕ]

〉
, ϕ, φ ∈ S(RN).

With this definition we can reformulate the weak boundedness property as
follows: The operator T has the weak boundedness property if and only if
for all normalized bump functions φ, ϕ associated with the unit ball, the set{〈

φ, T r
wϕ

〉
: w ∈ R, r > 0

}
is bounded.

The operator T is said to have the weak R-boundedness property provided
that there is a constant C such that, for every pair of normalized bump func-
tions ϕ, φ associated with the unit ball, we have that supv∈RN R

({〈
φ, T 2j

v ϕ
〉

:
j ∈ Z

})
≤ C.

If T is a singular integral operator with associated kernel K and φ, ϕ are
test functions with disjoint support, then

〈
φ, T r

wϕ
〉

= r−N
〈
φ( ·−w

r ), T [ϕ( ·−w
r )]

〉
= r−N

∫

RN

∫

RN

φ(u−w
r )K(u, v)ϕ(v−w

r )dv du

= rN

∫

Rn

∫

RN

φ(u)K(ru + w, rv + w)ϕ(v)dv du.

Therefore T r
w is also a singular integral operator associated with the kernel

Kr
w given by

Kr
w(u, v) = rNK(ru + w, rv + w).
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Corollary 2.1. Let a > 0, k ∈ N, w ∈ RN , and let ϕ, φ ∈ D0(RN) be nor-
malized bump functions associated with B(0, a) and B(w, 2ka) respectively.
Let T ∈ RCZOν satisfy the weak R-boundedness property.
(a) There is a constant C1 < ∞ such that for all v ∈ RN

R
({〈

φ, T 2j

v ϕ
〉

: j ∈ Z
})
≤ C1

1 + k

(a2k)N

(
1 +

|w|
a2k

)−N−ν

.

(b) If in addition T (1) = 0, then there are constants C2 < ∞ and δ > 0 such
that for all v ∈ RN ,

R
({〈

ϕ, T 2j

v φ
〉

: j ∈ Z
})
≤ C2(a2k)−N−ν

(
1 +

|w|
a2k

)−N−δ

.

Proof. Let v ∈ Rn be fixed and τv = {T 2j

v : j ∈ Z}. For (Sk)m
k=1 ⊆ τv consider

the continuous linear operator

[Sk] : S(RN) → S′(RN , L(RadX, RadY ))

defined by 〈
ϕ, [Sk]φ

〉
=

[〈
ϕ, Skφ

〉]
, ϕ, φ ∈ S(RN).

Then [Sk] is in CZOν , with constant not depending on v or the choice of the
finite sequence (Sk). Moreover, [Sk] satisfies the weak boundedness property
at 0, also with independent constant. Finally, if T (1) = 0, then also [Sk](1) =
0. So we can apply Lemma 2.1.

3 Proof of Theorem 1.1
In the proof of Theorem 1.1, we proceed in a similar way as in [13].

We will decompose our operator T into parts we can handle using Corol-
lary 2.1. For this we use a resolution of unity from [13, Sect. 2]: Take
Φ ∈ D0(RN) and Ψ ∈ S(RN) such that Φ is radial and real-valued, both
Φ̂ and Ψ̂ are non-negative, Φ̂(u) ≥ 1 for 1

2 ≤ |u| ≤ 2, Ψ̂ is supported in
{1

2 ≤ |u| ≤ 2}, and
∑

j∈Z
Φ̂(2ju)Ψ̂(2ju) = 1 for all u ∈ RN \ {0}.
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We write Φj(u) := 2−NjΦ(2−ju), Ψj(u) := 2−NjΨ(2−ju) and Pjf := Φj ∗ f ,
Qjf = Ψj ∗ f for f ∈ S′(RN , X).

For f ∈ S(RN) and j, k ∈ Z,

(PjTPkf)(u) = (Φj ∗ T [Φk ∗ f ])(u) =

〈
Φj(u− ·), T

[∫

R
Φk(· − v)f(v)dv

]〉

=

∫

R

〈
Φj(u− ·), T [Φk(· − v)]

〉
f(v)dv =

∫

R
Kj,k(u, v)f(v)dv

where Kj,k(u, v) :=
〈
Φj(· − u), T [Φk(· − v)]

〉
∈ L(X, Y ). (Recall that Φ is

radial.) We will consider the operators Tj,k associated with the kernels Kj,k:

Tj+k,jf =

∫

RN

Kj+k,j(u, v)f(v)dv, f ∈ S(RN , X).

One can show that Tj,k can be extended to bounded linear operators from
Lp(X) to Lp(Y ) for all p ∈ [1,∞] [15].

Proof. First we consider the case that k ∈ N. Then for g ∈ S(RN)⊗ Y ′ and
f ∈ S(RN)⊗X, we can estimate

∣∣∣∣
∑

j∈Z

〈
g,Qj+kTj+k,jQjf

〉∣∣∣∣ =

∣∣∣∣
∑

j∈Z

〈
2(j+k)s(Tj+k,j)

′Qj+kg, 2−(j+k)sQjf
〉∣∣∣∣

=

∣∣∣∣
∫ 1

0

〈∑

j∈Z
rj(t)2

(j+k)s(Tj+k,j)
′Qj+kg,

∑

l∈Z
rl(t)2

−(l+k)sQlf

〉
dt

∣∣∣∣

≤
(∫ 1

0

∥∥∥∥
∑

j∈Z
rj(t)2

(j+k)s(Tj+k,j)
′Qj+kg

∥∥∥∥
p′

Lp′ (X
′)

dt

)1/p′

×
(∫ 1

0

∥∥∥∥
∑

l∈Z
rl(t)2

−(l+k)sQlf

∥∥∥∥
p

Lp(X)

dt

)1/p

.

The second factor is bounded by C2−ks‖f‖Ḣs
p

by Kahane’s inequality and
results from [16]. To estimate the first factor, we observe that

([Tj+k,j]
′Qj+kg)(v) =

∫

RN

[Kj+k,j(u, v)]′(Qj+kg)(u)du

=

∫

RN

2jN [Kj+k,j(v + 2ju, v)]′(Qj+kg)(v + 2ju)du.
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Since

2jN [Kj+k,j(v + 2ju, v)]′ = 2jN
〈
Φj+k(· − v − 2ju), T [Φj(· − v)]

〉′
,

and Φj+k(·−v−2ju) = τvδ2jτuδ2kΦ, Corollary 2.1 (a) is applicable and yields
(cf. Proposition 2.1)

sup
v∈RN

R
({

2jN [Kj+k,j(v + 2ju, v)]′ : j ∈ Z
})
≤ C

1 + k

(a2k)N

(
1 +

|u|
a2k

)−N−ν

.

On the other hand, by a result of Bourgain ( [10, Lemma 3.5]),
(∫ 1

0

∥∥∥∥
∑

j∈Z
rj(t)2

(j+k)s(Qj+kg)(·+2ju)

∥∥∥∥
p′

Lp′ (Y
′)

dt

)1/p′

≤ C ln(2+2−k|u|)‖g‖Ḣs
p(Y ′).

So (∫ 1

0

∥∥∥∥
∑

j∈Z
rj(t)2

(j+k)s(Tj+k,j)
′Qj+kg

∥∥∥∥
p′

Lp′ (X
′)

dt

)1/p′

≤C
1 + k

(a2k)N

∫

RN

(
1 +

|u|
a2k

)−N−ν

ln(2 + 2−k|u|) du ‖g‖Ḣ−s
p′ (Y ′)

=C(1 + k)

∫

RN

(1 + |u|)−N−ν ln(2 + a|u|) du ‖g‖Ḣ−s
p′ (Y ′).

Now let −k ∈ N. Then for g ∈ S(RN) ⊗ Y ′ and f ∈ S(RN) ⊗ X, we can
estimate

∣∣∣∣
∑

j∈Z

〈
g,Qj+kTj+k,jQjf

〉∣∣∣∣ =

∣∣∣∣
∑

j∈Z

〈
2(j+k)sQj+kg, 2−(j+k)sTj+k,jQjf

〉∣∣∣∣

≤
(∫ 1

0

∥∥∥∥
∑

j∈Z
rj(t)2

(j+k)sQj+kg

∥∥∥∥
p′

Lp′ (Y
′)

dt

)1/p′

×
(∫ 1

0

∥∥∥∥
∑

l∈Z
rl(t)2

−(l+k)sTj+k,jQlf

∥∥∥∥
p

Lp(Y )

dt

)1/p

.

Now we proceed in a similar way. We use Corollary 2.1 (b) to show that

sup
u∈RN

R(2(j+k)NKj+k,j(u, u+2j+kv) : j ∈ Z) ≤ C2(a2|k|)−N−ν

(
1+

|v|
a2|k|

)−N−δ

.
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(Observe that Φj(· − u − 2jv) = τuδ2j+kτvδ2−kΦ and τvδ2−kΦ ∼ B(v, 2|k|a).)
Then, using again Bourgain’s result, we obtain

(∫ 1

0

∥∥∥∥
∑

j∈Z
rj(t)2

(j+k)sTj+k,jQjf

∥∥∥∥
p

Lp(Y )

dt

)1/p

≤C(a2|k|)−N−ν2−ks

∫

RN

(
1 +

|v|
a2|k|

)−N−δ

ln(2 + 2k|u|) du ‖f‖Ḣs
p(X)

=C(a2|k|)−ν2−ks

∫

RN

(1 + |v|)−N−δ ln(2 + a|u|) du ‖f‖Ḣs
p(X).

Finally, putting everything together,

∥∥Tf
∥∥

Ḣs
p(Y )

≤
∑

k∈Z

∥∥∥∥
∑

j∈Z
Qj+kTj+k,jQjf

∥∥∥∥
Ḣs

p(Y )

≤ C
0∑

k=−∞

2−|k|(n+ν)2|k|s‖f‖Ḣs
p(X) + C

∞∑

k=1

2−ks(1 + k)‖f‖Ḣs
p(X)

≤ C
∥∥f

∥∥
Ḣs

p(X)
.
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