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1. Introduction

Let K be an obstacle in IR
n, where n � 3 is odd, i.e. K is a compact

subset of IRn with C1 boundary @K such that


 = IR
n
nK

is connected. One of the main objects of study in scattering theory (by
an obstacle) is the so called scattering matrix S(z) related to the wave

equation in IR� 
 with Dirichlet boundary condition on IR� 
. This
is (cf. [LP], [M] or [Z]) a meromorphic operator-valued function

S(z) : L2(Sn�1) �! L2(Sn�1)

with poles f�jg
1
j=1 in the half-plane Im(z) > 0.

A variety of problems in scattering theory deal with �nding geometric
information about K from the distribution of the poles f�jg. In what
follows we describe one particular problem of this type.
The obstacle K is called trapping if there exists an in�nitely long

bounded broken geodesic (in the sense of Melrose and Sj�ostrand [MS])

in the exterior domain 
. For example, if 
 contains a periodic broken
geodesic (this is always the case when K has more than one connected
component), then K is trapping.
It follows from results of Lax-Phillips (1971) and Melrose (1982) that

if K is non-trapping, then fz : 0 < Im(z) < �g contains �nitely many
poles �j for any � > 0 (cf. the Epilogue in [LP] for more precise
information).
In the �rst edition of their monograph Scattering Theory published

in 1967, Lax and Phillips conjectured that for trapping obstacles there
should exist a sequence f�jg of scattering poles such that Im�j ! 0
as j ! 1. However M. Ikawa [I1] showed that this is not the case
when K is a disjoint union of two strictly convex compact domains
with smooth boundaries. It turned out that in this particular case

the scattering matrix has poles approximately at the points
k�

d
+ i�,

k = 0;�1;�2; : : : , where d is the distance between the two connected
201
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components K1 and K2 of K and � > 0 is a constant depending only
on the curvatures of @K at the ends of the shortest segment connecting

K1 and K2. Substantial new information concerning the distribution
of poles in this case was later given by C. Gerard [G].
Ikawa modi�ed the initial conjecture of Lax and Phillips in the fol-

lowing way.

Lax-Phillips Conjecture (LPC) (in the form given by M. Ikawa):
If K is trapping, then there exists � > 0 such that the strip fz : 0 <
Im(z) < �g contains in�nitely many pôles �j.

So far results concerning this conjecture are only known in the case
when K has the form

K = K1 [K2 [ : : : [Ks ;(1)

where Ki are strictly convex disjoint compact domains in IR
n (with C1

boundaries) satisfying the following condition introduced by M.Ikawa:

(H) Km\ convex hull(Ki [Kj) = ; for all m 6= i 6= j 6= m.

As we mentioned above, the LPC holds in the case s = 2. There are
partial results in the case s � 3 also due to Ikawa (cf. [I3], [I4]). Below
we brie
y describe Ikawa's approach in dealing with this case.
The starting point is the distribution

u(t) =
X
j

eijtj�j ; t 6= 0 ;

where as above f�jg is the set of all poles of the scattering matrix

S(z). Guillemin and Melrose [GM] showed that the sum of the principal
singularities of u(t) on IR+ isX




(�1)m
T
 j det(I � P
)j
�1=2�(t� d
) ;(2)

where 
 runs over the set of periodic broken geodesics in 
K , d
 is the
period (return time) of 
, T
 the primitive period (length) of 
, and
P
 the linear Poincar�e map associated to 
.
Applying the Laplace transform to (2), Ikawa [I3] introduced the

following zeta function (which could be called the scattering zeta

function)

Z(s) =
X

2�

(�1)m
T
jI � P
j
�1=2e�sd
 ; s 2 C :
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He then showed that the existence of analytic singularities of Z(s)
implies the existence of a band 0 < Im(z) < � containing an in�nite

number of scattering pôles �j (i.e. LPC holds).
Clearly Z(s) is a Dirichlet series. Let s0 be its abscissa of absolute

convergence. Assuming n = 3, Ikawa showed that there exists � > 0
such that in the region s0 � � < Re(s) � s0 the analytic singularities
of Z(s) coincide with these of the zeta function

Z0(s) =

1X
m=0

X



(�1)mr
T
e
m(�sT
+�
) ;

where 
 runs over the set of primitive periodic broken geodesics in 
,
r
 = 0 if 
 has an even number of re
ection points and r
 = 1 other-
wise, and �
 2 IR is determined by the spectrum of the linear Poincar�e

map related to 
. The function Z0(s) is rather similar to a dynami-
cally de�ned zeta function (cf. the survey of Baladi [Ba] for general
information on this topic). One of the main tools to study this sort of
zeta function is the so called Ruelle operator (well known e.g. from the

study of Gibbs measures in statistical mechanichs and ergodic theory,
cf. [R1] and [Si]). Ikawa [I4] succeeded to implement results of Pollicott
(1986) and Haydn (1990) concerning the spectrum of the Ruelle oper-
ator and derived su�cient conditions for Z0(s) (and therefore Z(s)) to
have a pole in a small neighbourhood of s0 in C. From this he derived
the following.

Theorem 1. ([I4]) If K is a �nite union of disjoint balls in IR
3 with

the same radius � > 0 and � > 0 is su�ciently small, then LPC holds.

The study of the scattering zeta function itself seems to be rather dif-
�cult and very few results concerning it are known. Petkov [P] showed
that Z(s) admits an analytic continuation in the domain Re(s) � s0.
Moreover, under some additional assumptions about the geometry of
the obstacle K and assuming rational independence of the primitive
periods of periodic orbits, Petkov proved that supt2IR jZ(s0 + it)j =1

(cf. [P] for some further results on the properties of Z(s)). Assuming
that the broken geodesic 
ow has two periodic orbits 
1 and 
2 such
that T
1=T
2 is a diophantine number, Naud [N] proved that Z(s) has
an analytic continuation to a domain of the form

s0 �
C

jtj�
< Re(s) � s0 ; jtj = jIm(s)j � 1 ;

for some constants C > 0 and � > 0.
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2. Spectrum of the Ruelle operator and dynamical zeta

function

In the case when the obstacle K has the form (1), it is sometimes
more convenient to work with the billiard ball map B (i.e. the shift
along the broken geodesic 
ow from boundary to boundary) on the non-
wandering set M0. The latter is the set of all points � 2 S�@K(IR

n) that

generate trapped broken geodesics in both directions. As a dynamical
system B : M0 �! M0 is naturally isomorphic to the Bernoulli shift
on the symbolic space

� =

1Y
�1

f1; 2; : : : ; sg ;

the isomorphism being given by the natural coding of the geodesics
by sequences fijg, where ij = 1; : : : ; s is the number of the connected
component Kij containing the jth re
ection point. Ikawa [I4] used the
classical interpretation of the Ruelle operator as an operator acting
on the space of Lipschitz functions on the symbol space �. However,
having in mind some signi�cant recent developments, it seems more

convenient to use a di�erent model which is more closely related to the
dynamics of the 
ow.

In this section we describe some recent results of the author con-
cerning the spectrum of the Ruelle operator and the dynamical zeta
function related to the broken geodesic 
ow in the exterior of an ob-

stacle of the form (1) in the IR
2. The results are similar to these of

Dolgopyat [D] in the case of Anosov 
ows on compact manifolds. One
would expect that similar results could be obtained (by using similar
techniques) for obstacles in IR

n, n � 3. Such results would very likely
lead to partial solutions of the LPC for cases much more general then

the one considered in Theorem 1 above.
From now on we assume that K is an obstacle of the form (1) in

IR
2. Let � be the non-wandering set of the broken geodesic 
ow in 
.

Clearly � is the union of all orbits generated by elements of the set M0

de�ned above. For x 2 � n S�@K(
) and a su�ciently small � > 0 let

W s
� (x) = fy 2 S�(
) : �(�t(x); �t(y)) � � for all t � 0 ;

�(�t(x); �t(y))!t!1 0 g ;

W u
� (x) = fy 2 S�(
) : �(�t(x); �t(y)) � � for all t � 0 ;

�(�t(x); �t(y))!t!�1 0 g

be the (strong) stable and unstable sets of size �. It is easy to show that

for every x 2 � nS�@K(
) and every su�ciently small � > 0, W s
� (x) and
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W u
� (x) are 1-dimensional submanifolds of S

�(
). It is worth mentioning
that both W s

� (x) \ � and W u
� (x) \ � are Cantor sets.

Given � > 0, set

S�� (
) = fx = (q; v) 2 S�(
) : dist(q; @K) > �g ; �� = � \ S�� (
) :

In what follows in order to avoid ambiguity and unnecessary complica-
tions we will consider stable and unstable manifolds only for points x
in S�� (
) or ��; this will be enough for our purposes.
It follows from the genaral theory of horocycle foliations (cf. [S] or

[KH]) that if � > 0 is su�ciently small, there exists � > 0 such that if
x; y 2 � and �(x; y) < �, thenW s

� (x)\� and �[��;�](W
u
� (y)\�) intersect

at exactly one point [x; y]. That is, there exists a unique t 2 [��; �]
such that �t([x; y]) 2 W u

� (x). Setting �(x; y) = t, de�nes the so called
temporary distance function � ([Ch1]). If z 2 �� and U � W u

� (z)
and S � W s

� (z) are closed (i.e. containing their end points) curves
containing z and such that U \ � and S \ � have no isolated points,
then

� = [U \ �; S \ �] = f[x; y] : x 2 U \ � ; y 2 S \ � g

is called a rectangle in ��. Notice that � is "foliated" by leaves [x; S\�]
of stable manifolds.
Let R = fRig

k
i=1 be a family of rectangles such that each Ri is

contained in a C1 cross-section Di � S�� (
) to the 
ow �t. Thus, for
each i, Ri = [Ui\�; Si\�], where Ui and Si are closed curves inW

u
� (zi)

and W s
� (zi), respectively, for some zi 2 ��. Set

R =

k[
i=1

Ri :

The family R is called complete if there exists T > 0 such that for
every x 2 � there exist t1 2 [�T; 0) and t2 2 (0; T ] with �t1(x) 2 R
and �t2(x) 2 R. Thus, �(x) = t2(x) > 0 is the smallest positive time
with P (x) = ��(x)(x) 2 R, and P : R �! R is the Poincar�e map

related to the family R.
Following [B] and [Ra] we will say that a complete family R =

fRig
k
i=1 of rectangles in S�� (
) is a Markov family of size � 2 (0; �=2)

for the billiard 
ow �t if:
(a) Ri \ Rj = ; for i 6= j and for each i the sets Ui \ � and Si \ �

are contained in the interior of the curves Ui and Si, respectively;
(b) diam(Ri) � � ;
(c) For any i 6= j and any x 2 Ri\P

�1(Rj) we have P ([x; Si\�]) �
[P (x); Sj] and P ([Ui \ �; x]) � [Uj; P (x)];
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(d) For any i = 1; : : : ; k and x 2 Ri the function � is constant on
the set [x; Si \ �].

The existence of a Markov family R of an arbitrarily small size � > 0
for �t follows from the construction of Bowen [B] (cf. also Ratner [Ra]).
It follows from a result of C. Robinson [Ro] that there exists an open

neighbourhood V of �� in S�(
) and C1 transverse foliations F u and
F s on V such that W u

� (x) \ V = F u(x) and W s
� (x) \ V = F s(x) for

any x 2 � \ V . Fix a neighbourhood V and C1 foliations F u and F s

with these properties.

Choosing � > 0 su�ciently small, we may assume that our Markov
family R satis�es the following additional condition:

(e) For each i the cross-section Di (and therefore the rectangle Ri)

is contained in V .

In what follows we assume that R = fRig
k
i=1 is a �xed Markov family

for �t satisfying the extra conditions (e) and (f). Then

U =

k[
i=1

Ui ;

is a �nite disjoint union of compact curves in V .
Using the foliations F u and F s in V , assuming again that V is su�-

ciently small, we can extend the product [x; y] over the whole Ui � Si
for any i as follows. Given x 2 Ui � W u

� (zi) = F u(zi) \ V and
y 2 Si � W s

� (zi) = F s(xi) \ V , the sets F s(x) and �[��;�](F
u(y))

intersect at exactly one point [x; y].
The image of the C1 map Ui�Si 3 (x; y) 7! [x; y] is a 2-dimensional

sumanifold of S�� (
) which will be denoted by ~Ri = [Ui; Si]. The pro-

jection p : ~R = [k
i=1

~Ri �! U along the leaves of F s is C1. Then the

Poincar�e map P : ~R �! [k
i=1Di and the corresponding root function

� : ~R �! [0;1) are well-de�ned and C1. Thus, � can be extended to a
C1 map � : U �! U by the same formula: � = p �P . In the same way

one observes that �(x; y) is well-de�ned and C1 for (x; y) 2 [k
i=1

~Ri�
~Ri.

Let C(U) be the space of bounded continuous functions on U . For
g 2 C(U) denote kgk = kgk0 = supx2U jg(x)j. Given g, the Ruelle

operator Lg : C(U) �! C(U) is de�ned in the usual way:

(Lgh)(u) =
X

�(v)=u

eg(v)h(v):
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If g 2 C1(U), then clearly Lg preserves the space C
1(U). Here C1(U)

denotes the space of di�erentiable function with bounded derivatives

on U .
A conjugacy between � \ R and the Bernoulli shift on a symbolic

space �A is now de�ned in the usual way. Let A = (Aij)
k
i;j=1 be the

matrix given by Aij = 1 if P (Ri)\Rj 6= ; and Aij = 0 otherwise. Then

�A = f(ij)
1
j=�1 : 1 � ij � k; Aij ij+1 = 1 for all j g;

and the Bernoulli shift ~� : �A �! �A is given by ~�((ij)) = ((i0j)),

where i0j = ij+1 for all j. De�ne � : R �! �A by �(x) = (ij)
1
j=�1,

where P j(x) 2 Rij for all j 2 Z. Notice that P : R �! R is invertible,

so P j is well-de�ned for all integers j. The map � is a homeomorphism
when �A is considered with the product topology, and ~� � � = � � P .
The projection r of � on �A is given by r � � = � .
The subset � \ U of R can be naturally identi�ed with

�+
A = f (ij)

1
j=0 : 1 � ij � k ; Aij ij+1 = 1 for all j � 0 g:

Namely, if � : �A �! �+
A is the natural projection, then �+ = � �

�j�\U : � \ U �! �+
A is a bijection with ~� � �+ = �+ � �, where ~�

denotes the corresponding Bernoulli shift on �+
A.

The dynamical zeta function of the broken geodesic 
ow �t is de�ned
by

�(s) =
Y



(1� e�s`(
))�1 ;

where 
 runs over the set of closed orbits of �t and `(
) is the least
period of 
. One can easily see that

�(s) = exp

0
B@ 1X

n=1

1

n

X
�n(x)=x
x2U\�

e�s�n(x)

1
CA ;

where

�n(x) = �(x) + �(�(x)) + : : :+ �(�n(x))

is the period (length) of the closed orbit generated by x. That is, we
have

�(s) = exp

 
1X
n=1

1

n
Zn(�s�)

!
;

where

Zn(�s�) =
X

�n(x)=x
x2U\�

e�s�n(x) :
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The following lemma1 of Ruelle ([R2], cf. also [PoS]) partially ex-
plains the relationship between the Ruelle operator and the behaviour

of the dynamical zeta function �(s).

Lemma 1. (Ruelle) Let xj be an arbitrary point in Uj \� for every

j = 1; : : : ; k. There exist constants C > 0, � > 0, � 2 (0; 1) such that�����Zn(�s�)�

kX
j=1

�
Ln
�s��Uj

�
(xj)

����� � CjIm(s)jn�n

for all n � 1 and all s 2 C with Re(s) � hT��, hT being the topological

entropy of the 
ow �t, and �Uj is the characteristic function of Uj in U .

The suspended 
ow ~�r over �r
A = f(�; t) : � 2 �A; 0 � t � r(�) g

is de�ned by ~�rs(�; t) = (�; t + s), where we use the identi�cation

(�; r(�)) = (�(�); 0) in �A � IR. Then �
r;+
A = f(�; t) 2 �r

A : � 2 �+
Ag is

a closed subset of �r
A which is invariant under the semi
ow ~�rt , t � 0

(cf. [PP2] for details). A conjugacy between ~�rt and �t on � is de�ned

by �r(�s(x)) = (�(x); s) for x 2 R and 0 � s � �(x).
Given � 2 (0; 1), consider the metric d� on �A given by d�(�; �) = 0 if

� = � and d�(�; �) = �n if �i = �i for jij � n and n is maximal with this
property. In a similar way one de�nes a metric d� on �+

A. Using it, we

get a metric on �
r;+
A by setting dr�((�; t); (�; s)) = d�(�; �)+ jt�sj�. The

spaces of Lipschitz functions on �+
A and �

r;+
A with respect to the metrics

just de�ned will be denoted by F�(�
+
A) and F�(�

r;+
A ), respectively.

In the present setting the well-known Perron-Ruelle-Frobenius theo-
rem reads as follows.

Perron-Ruelle-Frobenius Theorem. Let f 2 F�(�
+
A) be a real-

valued function.

(a) The Ruelle operator Lf : F�(�
+
A) �! F�(�

+
A) has a simple eigen-

value � = ePr(f), where Pr(f) is the topological pressure of f , and a

strictly positive eigenfunction h 2 F�(�
+
A).

(b) spec(Lf) n f�g is contained in a disk of radius strictly less than

�.
(c) There exists a unique probability measure � = �f on �+

A such thatZ
Lf (g) d� = �

Z
g d�

for all g 2 F�(�
+
A).

1Its statement is slightly modi�ed to suit the present context.
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The measure �f is the so calledGibbs measure related to the potential
f ([R1], [Si]).

The complex case is more complicated. It was estabslished by Polli-
cott [Po] that for any f = u+ iv 2 F�(�

+
A) the spectral radius of Lf as

an operator on F�(�
+
A) is not greater than ePr(u). Moreover, if Lf has

an eigenvalue � with j�j = ePr(u), then � is simple and unique and the
rest of the spectrum is contained in a disk of strictly smaller radius. If

Lf has no eigenvalues � with j�j = ePr(u), then the whole spectrum of

Lf is contained in a disk of radius less than ePr(u).
The following result was obtained by using a modi�cation of the

technique developed by Dolgopyat [D] in order to prove a similar result
in the case of Anosov 
ows on compact manifolds2, in particluar for
geodesic 
ows on surfaces of negative curvature.

Theorem 2. ([St2]) There exist constant c0 < hT and � 2 (0; 1)
such that for Re(s) � c0 and jIm(s)j >> 0 the spectral radius of the

Ruelle operator L�s� does not exceed �.

Using the above theorem and applying the argument of Pollicott
and Sharp [PoS] in the case of geodesic 
ows on compact surfaces of
negative curvature, one derives that the zeta function

�(s) =
Y



(1� e�s`(
))�1

of the billiard 
ow �t has an analytic continuation in a half-plane
Re(s) > c0 for some c0 < hT except for a simple pole at s = hT . More-
over, folowing [PoS] again, one derives that there exists c 2 (0; hT ) such
that

�(�) = #f
 : `(
) � �g = li(ehT �) +O(ec�)

as � ! 1, where li(x) =
R x

2
du= logu. The latter is a much stronger

result than the standard Prime Orbit Theorem for open planar billiards

in [Mor] (cf. [St1] for the higher dimensional case) derived by means
of a result of Parry and Pollicott [PP1].

3. Exponential decay of correlations

In this section we continue to consider the case when K is an obstacle
of the form (1) in IR

2, and we also use most of the notation from Sect.2.

2In fact the primary aim of Dolgopyat was to establish exponential decay of

correlations for such 
ows. See Sect.3 for more information.
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Let F 2 F�(�) for some � > 0. Denote by ~F the function on �r
A

such that ~F � �r = �r � F . There exists � = �(�) 2 (0; 1) such that
~F 2 F�(�

r
A). Let ~� be the Gibbs measure related to ~F with respect to

the suspended 
ow ~�r, and let P = Pr~�r( ~F ) be the topological pressure

of ~F with respect to ~�r. A function ~f 2 F�(�
+
A) related to ~F is de�ned

by

~f(�) =

Z r(�)

0

~F (�; s) ds :

Let ~� be the Gibbs measure on �A determined by the function ~f �Pr.
Then (cf. [PP2])

d~�(�; s) =
1

�(r)
d~�(�)ds ; where �(~g) =

Z
�A

~g(�) d~�(�) :

Moreover, we have Pr~�( ~f � Pr) = 0: The Gibbs measures ~� and ~�
give rise to measures � and � on R and � \ U , respectively, via the

conjugacies �r and �. If f is the function on � \ U such that ~f �

� = � � f , then f(x) =

Z �(x)

0

F (�s(x)) ds, so f 2 F�(� \ U). The

measures � and � are called the Gibbs measures related to F and f�P� ,
respectively. It follows from above that Pr�t(F ) = P and Pr�(f�P�) =
0.

Given a a H�older continuous potential F on � and arbitrary A;B 2

F�(�), the correlation function of A and B is de�ned by

�A;B(t) =

Z
�

A(x)B(�t(x)) d�F (x)�

�Z
�

A(x) d�F (x)

��Z
�

B(x) d�F (x)

�
:

It is an important problem in smooth ergodic theory (and also in var-

ious areas in physics) to know whether such a function decyas expo-
nentially fast as t!1.
Using Theorem 2 above and the technique developed by Dolgopyat

[D], one immediately gets the following.

Theorem 3. Let F be a H�older continuous function on � in S�(
)
and let �F be the Gibbs measure determined by F on �. For every

� > 0 there exist constants C = C(�) > 0 and c = c(�) > 0 such that

j�A;B(t)j � Ce�ctkAk� kBk�

for any two functions A;B 2 F�(�).

Here khk� denotes the H�older constant of h 2 F�(�).
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We refer the reader to the recent survey article of Baladi [Ba] for
general information and historical remarks on decay of correlations.

Amongst the most recent achievements one should mention the impor-
tant articles of Liverani [L], Young [Y], Chernov [Ch1] and Dolgopyat
[D] answering long standing questions. It apppears that for billiards
the only results of this type that have been known so far concern the

corresponding discrete dynamical system (generated by the billiard ball
map from boundary to boundary). To my knowledge, these results are:
the subexponential decay of correlations established for a very large
class of dispersing billiards by Bunimovich, Sinai and Chernov [BSC]

and the exponential decay of correlations for some classes of dispersing
billiards in the plane and on the two-dimensional torus established by
Young [Y] and Chernov [Ch2] as consequences of their more general
arguments. Theorem 3 above describes a non-trivial class of billiard
(broken geodesic) 
ows with exponential decay of correlations for any

H�older continuous potential.
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