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III APPLICATIONS

by
A. N. Mllgram

A* Solvable Groups*

Before proceeding with the applications we must

discuss certain questions in the theory of groups. We shall

assume several simple propositions! (a) If N is a normal sub-

group of the group 0, then the mapping f(x) » xN is a homo-

morphlsm of 0 on the factor group 0/N. f is called the natural

homomorphism. (b) The image and the Inverse image of a normal

subgroup under a homomorphism Is a normal subgroup* (c) If f

is a homomorphism of the group G on Qf, then setting Nf s f(N),

and defining the mapping g as g(xN) * f(x)Nf, we readily

see that g is a homomorphism of the factor group G/N on the

factor group G'/b'. Indeed, if N is the inverse Image of Nf

then g is an isomorphism.

We now prove

THEOREM 1. (Zaasenhaus) If U and V are subgroups of G,

u and v normal subgroups of U and V, respectively, then the fol-

lowing three factor groups are isomorphict u(TJnV)/u(TTnv)f

v(UnV)/v(unV), (UAV)/(unV)(vnU).

It is obvious that UA v is a normal subgroup of UoV.

Let f be the natural mapping of U on U/u. Call f(UnV) *H

and f(Unv) • K. Then f-̂ H) « u(UnV) and

f-1(K) • u(Unv) from which it follows that

ia Isomorphic to HA- I*» however, we

view f as defined only over UnV, then

f-l(K) « Iuo(UnV)J (Unv) - (unV)(Unv) so that

(UnV)/(unV)(Uov) is also isomorphic to E/K. Thus the

first and third of the above factor groups are isomorphic
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to each other. Similarly, the second and third factor

groups are Isomorphlc.

Corollary 1. If H is a subgroup and N a normal subgroup

of the group G, then H/HnN is Isomorphlc to HN/N, a sub-

group of G/N.

Proof: Set 0 = U, N = u, H =» V and the Identity

1 » v In Theorem 1.

Corollary 2» Under the conditions of Corollary 1, if G/N

is abelian, so also is H/Hr>N>

Let us call a group G solvable if It contains a

sequence of subgroups G - GQ:> G^D ... 3G = 1, each a normal

subgroup of the preceding, and with <*« -,/G* abelian.

THEOREM 2. Any subgroup of a solvable group Is solvable.

For let H be a subgroup of G, and call H^ * HnG^.

Then that H. ./&. is abelian follows from Corollary 2

above, where &« 3* Q« and H. . play the role of G, N and H.

THEOREM 3. The homomorph of a solvable group la solvable,

Let f(G) = G', and define G£ » f(G1) where G± belongs

to a sequence exhibiting the solvability of G. Then by (c)

there exists a homomorphlsm mapping G. ./G. on G' ../G*.

But the homomorphic image of an abelian group is abelian

so that the groups G' exhibit the solvability of Gf.

B. Permutation Groups.

Any one to one mapping of a set of n objects on It-

self is called a permutation. The iteration of two such

mappings is called their product. It may be readily verified

that the set of all such mappings forms a group In which the

unit Is the identity map. The group Is called the symmetric
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group on n letters.

Let us for simplicity denote the set of n objects by

the numbers 1,2, . ..,n. The mapping S such that 3(1) s 1+1 mod

n will be denoted by (123...n) and more generally (ij...m)

will denote the mapping T. such that T(i) = J,...,T(m) = 1. If

(ij...m) has k numbers, then it will be called a k cycle. It

is clear that if T - (ij...s) then T"1 » (s...Jl).

We now establish the '

Lemma. If a subgroup U of the symmetric group on

n letters (n > 4) contains every 3-cycle, and if u is a normal

subgroup of U such that U/u is abelian, then u contains every

3-cycle.

Proof: Let f be the natural homomorphlsm f(U) = U/u

and let x = (IJk), y = (krs) be two elements of U, where i,J,

k,r,s are 5 numbers. Then, since U/u is abelian, setting

f(x) » x', *f(y) * y' we have ftx-V1 )̂ - x'-̂ '̂ x'y' - 1, so

that x-V̂ xy e u. But x-V^xy- (kjl)»(srk)«(ijk)»(krs)a(kjs)

and for each k, J,s we have (kjs) e u.

THEOREM 4. The symmetric group G on n letters is not

solvable for n > 4.

If there were a sequence exhibiting the solvability,

since 0 contains every 3-cycle, so would each succeeding

group, and the sequence could not end with the unit.

C. Solution of Equations by Radicals.

The extension field E over F is called an extension

by radicals if there exist Intermediate fields B̂ ,B̂ ,...,2̂ * E

and B^ • B̂ .̂ tai) where each a^ is a root of an equation of

the form xni - a^ a 0, aA e B£_^. A polynomial f(x) in a
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field P Is said to be solvable by radicals If Its splitting

field lies In an extension by radicals. We assume unless

otherwise specified that the base field has characteristic

0 and that F contains as many roots of unity as are needed to

make our subsequent statements valid.

Let us remark first that any extension of F by radi-

cals can always be extended to an extension of F by radicals

which Is normal over F. Indeed BI la a normal extension of

BQ since It contains not only a1, but ea., where e Is any

n̂ -root of unity, so that B̂  Is the splitting field of

xnl - a1. If fx(x) T̂fCx1*2 - 0(a2)), where o takes all values

In the group of automorphisms of B. over BQ, then f. Is In B ,

and adjoining successively the roots of x11^ • o(a2) brings us

to an extension of Bg which Is normal over F. Continuing In

this way we arrive at an extension of S by radicals which will

be normal over F. We now prove the

THEOREM 5. The polynomial f (x) Is solvable by radicals

If and only If Its group Is solvable*

Suppose f(x) Is solvable by radicals. Let £ be a

normal extension of F by radicals containing the split-

ting field B of f(x),and call G the group of E over F.

Since for each 1 B. Is a Kummer extension of B.,, the

group of B^ over B^_^ Is abellan. In the sequence of

groups G = GB D GfoD . .. DGg = 1 each Is a normal sub-

group of the preceding since Gg Is the group of E over
Bl-l an^ Bl *fl a normal extension of B, ,. But

Gg 1/
GB1

 is the group of B^ over Bia-1 and hence Is

abellan. Thus G Is solvable. However, GB Is a normal
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subgroup of 0, and G/Gg Is the group of B over F, and is

therefore the group of the polynomial f(x)« But G/Gg Is

a homomorph of the solvable group G and hence is itself

solvable.

On the other hand, suppose the group G of f (x) to be

solvable and let E be the splitting field. Let

Q * a 3 G^D ...3 Gr * 1 be a sequence with abelian factor

groups. Call B̂  the fixed field for Ĝ . Since Oi-1 is

the group of E over Bj, and G^ is a normal subgroup of

Gi-Bl, then B̂  is normal over Bĵ  and the group Gĵ /Ĝ

is abelian. Thus B^ is a Rummer extension of BI-I,

hence is splitting field of a polynomial of the form

(xn-a1)(x
n-a2)...(x

n~as) so that by foraing the successive

splitting fields of the xn-ak we see that Bj, is an exten-

sion of Bj« by radicals, from which it follows that E is

an extension by radicals.

Remark. The assumption that F contains roots of

unity is not necessary in the above theorem. For if f (x) has

a solvable group G, then we may adjoin to F a primitive nth

root of unity, where n is, say, equal to the order of G. The

group of f(x) when considered as lying in F1 is, by the theorem

of Natural Rationality, a subgroup Gf of G, and hence is

solvable. Thus the splitting field over F' of f(x) can be ob-^

tained by radicals. Conversely, if the splitting field E over

F of f (x) can be obtained by radicals, then by adjoining a

suitable root of unity E is extended to Ef which is still

normal over F. But Ef could-be obtained by adjoining first the

root of unity, and then the radicals, to F; p would first be
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extended to Ff and then Ff would be extended to Ef. Calling G

the group of Ef over F and Gf the group of Ef over F1., we see

that Gf Is solvable and G/GM is the group of Ff over F and

hence abelian. Thus 0 is solvable. The factor group G/Og

is the group of f(x) and being a homomorph of a solvable group

is also solvable.

D. The General Equation of Degree n.

If F is a field, the collection of rational express-

ions in the variables û ,Ug,.,.,un with coefficients in F is a

field Ffu^Ug, ...ĵ). By the general equation of degree n

we mean the equation

(1) f(x) - XP - Û 11"1 + UgX11-2 -+...+ (-l)nUn.

Let E be the splitting field of f(x) over

FCu^Ug, ...,un). If vlfv2,...,vn are the roots of f(x) in E,

then ux » vI + Vg + ... * vn, Ug » VjVg + v̂ -f ... + vn-1vn,..

..., un * *VVg....*vn.

We shall prove that the group of E over

Ffu-̂ Ug,...,1̂ ) is the symmetric group.

Let F(x1,x2,...,xn) be the field generated from F by

the variables x1,Xg, ...̂ XQ. Let a^ = x1 + Xg + ••• + xn«

ag - x̂  * x̂  -i- ... * xn-1xn,..., â  - xxxg ...Xn be the

elementary symmetric functions, i.e., (x-x1)(x-Xg)...(x-xn) *

x11 - ô 11"1 + - ...(-1)̂  « f*(x). If gfâ ctg,...,̂ ) is a

polynomial in â , ...,0̂, then g(o1,Og, ...,0̂) « 0 only if g is

the zero polynomial. For if gtZx̂ Zx̂ x̂ ,...) * 0, then this

relation would hold also if the x̂  were replaced by the v̂ .

Thus, gf̂ î v̂̂ ...)» 0 or g(upUg,...,1̂ ) » 0 from which it

follows that g is identically zero.
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Between the subfleld Ffc^, ...,0̂ ) of T?(x^9...9xn)

and Ffu^Ug, ...,1̂) we set up the following correspondences

Let ftup ...jÛ /gCû , •••*un) be an element of FCu-p .. .,1̂).

We make this correspond to ffcc^* •••»on)/g(a1, ••.,on). This is

clearly a mapping of Ffû ug,.. .,1̂ ) on all of Ffâ ,...,an).

Moreover, if f(apĈ  . ..jâ Vgfa-̂ ag, •• -*an) =

f1(a1,o2,...,an)/g1(a1,a2,...,an), then fgx - gfx = 0. But

this implies by the above that

ftup ...,un).g1(u1,...,un) - g(ux, ...,un)»f1(u1, ...,un) = 0

so that f(ux, . ..jÛ /gfû Ug, . ..,un) =

f̂ u.̂ , •••>un)/Si(
ui*'u2* •••,un). It follows readily from this

that the mapping of F(û ,Ug,.. •9un) on F(â ,Og,. • •9CLn) is an

isomorphism. But under this correspondence f(x) corresponds

to f*(x). Since E and F(x̂ X̂g,•.«,xn) are respectively split-

ting fields of f(x) and f*(x), by Theorem 10 the isomorphism

can be extended to an isomorphism between E and F(x1,x2, • • •,xn).

Therefore, the group of E over F(û ,Ug,.. .,un) is isomorphic

to the group of F(X-,XO, .. .,x ) over F{a.,a2, • ..,a ).

Each permutation of X1,x2,...,xn leaves a^Og, ...,0̂

fixed and, therefore, induces an automorphism of

Ffx-j^Xg* •«.,xn) which leaves F(a1,o2,.. .9an) fixed. Conversely,

each automorphism of F(zpXg9..*,xn) which leaves FCâ ,...,̂ )

fixed must permute the roots x^^Xg, ...,xn of f*(x) and is com-

pletely determined by the permutation it effects on

x̂ Xg,...,̂ . Thus, the group of F(x1,x2,. ..,xn) over

F(â ,Og,.••»<*n) is the symmetric group on n letters. Because

of the isomorphism between F(x̂ , ...,xn) and E, the group for E

over F(û ,Ug,. ,.,un) is also the symmetric group. If we

remark that the symmetric group for n > 4 is not solvable,
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we obtain from the theorem on solvability of equations the

famous theorem of Abel:

THEOREM 6. The group of the general equation of degree n

Is the symmetric group on n letters* The general equation of

degree n la not solvable by radicals If n > 4.

E. Solvable Equations of Prime Degree.

The group of an equation can always be considered as

a permutation group. If f(x) Is a polynomial In a field F,

let dĵ ag,•••*on be the roots of f(x) In the splitting field

E = F(â f •• •fon)« Then each automorphism of E over P maps

each root of f(x) Into a root of f(x), that Is, permutes the

roots. Since E Is generated by the roots of f(x), different

automorphisms must effect distinct permutations. Thus, the

group of E over P Is a permutation group acting on the roots

ĉ og, ...,an of f(x).

For an Irreducible equation this group Is always

transitive. For let a and a1 be any two roots of f(x), where

f(x) Is assumed Irreducible. F(a) and F(a') are Isomorphlc

where the Isomorphism Is the Identity on F, and this Isomorph-

ism can be extended to an automorphism of E (Theorem 10).

Thus, there Is an automorphism sending any given root Into any

other root, which establishes the "transitivity" of the group.

A permutation o of the numbers l,2,...,q Is called a

linear substitution modulo q If there exists a number b j£ 0

modulo q such that 0(1) » bl + c(mod q), 1 = 1,2, ...,q.

THEOREM 7. Let f (x) be an Irreducible equation of prime

degree q In a field F. The group G of f(x) (which Is a permut-

ation group of the roots, or the numbers 1,2,...,q) Is solvable
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if and only if, after a suitable change in the numbering of the

roots, G la a group of linear substitutions modulo q, and in

the group G all the substitutions with b = 1, o(i) 5 o+ 1

(c » l,2,»..,q) occur.

Let G be a transitive substitution group on the numbers

1,2,...,q and let GI be a normal subgroup of G. Let

1,2,...,k be the images of 1 under the permutations of G-̂ j

we says l,2,...,k is a domain of transitivity of G-̂ . If

1 5 q is a number not belonging to this domain of transit-

ivity, there is a oeG which maps 1 on 1. Then

o(l,2,...,k) is a domain of transitivity of oĜ o"1. Since

G! is a normal subgroup of G, we have G^ » oGjO"*1. Thus,

0(1,2,...,k) is again a domain of transitivity of GI which

contains the integer 1 and has k elements. Since 1 was

arbitrary, the domains of transitivity of G^ all contain k

elements. Thus, the numbers 1,2,...,q are divided Into a

collection of mutually exclusive sets, each containing k

elements, so that k is a divisor of q. Thus, In case q is

a prime, either k » 1 (and then G, consists of the unit

alone) or k • q and GI is also transitive.

To prove the theorem, we consider the case In which G

is solvable. Let G»GO3G^2 ... 3 Gg<̂  » 1 be a sequence

exhibiting the solvability* Since Ga is abelian, choosing

a cyclic subgroup of it would permit us to assume the term

before the last to be"cyclic, i.e., Gfl Is cyclic. If o

is a generator of GS, o must consist of a cycle containing

all q of the numbers l,2,...,q since in any other case Gg

would not be transitive [if a » (llj...m)(n...p)...

then the powers of o would map 1 only into l,i,J...m,
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contradicting the transitivity of Gg]. By a change in the

numbering of the permutation letters, we may assume

o(i) s i + 1 (mod q) ,

oc(l) 2 i * c (mod q) .

Now let t be any element of G . Since Gg is a normal

subgroup of GS_I, TOT"! is an element of Gg, say TOT"! = ob.

Let T(i) » 3 orf1(J) = i, then

toT'̂ tj) * ob(j) 5 j •*• b (mod q). Therefore,

To(i) = T(i) + b (mod q) or t(i+l) 2 t(i) ••• b for each i.

Thus, setting T(O) » c, we have T(!) s c + b,

T(2) = T(l) 4- b » c + 2b and in general t(l) 2 c*ib(mod q).

Thus, each substitution in Gg_^ is a linear substitution.

Moreover, the only elements of Gg_^ which leave no element

fixed belong to Gs, since for each a ̂  1, there is an i

such that ai * b s i (mod q) [take i such that (a-1) is -b].

We prove by an induction that the elements of G are

all linear substitutions, and that the only cycles of q

letters belong to Gg. Suppose the assertion true of

Ga.n. Let T e Ga_n-1 and let o be a cycle which belongs to

G8 (hence also to Ga-n). Since the transform of a cycle

is a cycle, I~^QI is a cycle in Gs.n and hence belongs to

Gg. Thus T""1<rc * ob for some b. By the argument in the

preceding paragraph, T is a linear substitution bi + c and

if T itself does not belong to Gg, then t leaves one

integer fixed and hence is not a cycle of q elements.
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We now prove the second half of the theorem. Suppose G

Is a group of linear substitutions which contains a sub-

group N of the form o(i) = i + c. Since the only linear

substitutions which do not leave an integer fixed belong to

N, and since the transform of a cycle of q elements is

again a cycle of q elements, N is a normal subgroup of 0.

In each coset N*T where T(i) s bi + c the substitution

o-1T occurs, where o s 1 + c. But o-1T(i) 2 (bi+c) - c » bl.

Moreover, if t(i) = bl and T'(i) = b'i then Tt'(i) = bbvl.

Thus, the factor group (0/N) is isomorphic to a multiplica-

tive subgroup of the numbers 1,2,...,q-l mod q and is

therefore abellan. Since (0/N) and N are both abellan, G

is solvable.

Corollary 1. If Q is a solvable transitive substitution

group on q letters (q prime), then the only substitution of

Q which leaves two or more letters fixed is the identity.

This follows from the fact that each substitution is

linear modulo q and bi + c 5 i (mod q) has either no solu-

tion (b 2 1, c £ 0) or exactly solution (b ̂  1) unless

b 5 1, c a 0 in which case the substitution is the identity.

Corollary 8. A solvable, irreducible equation of prime

degree in a field which is a subset of the real numbers

has either one real root or all its roots are real.

The group of the equation is a solvable transitive

substitution group on q (prime) letters. In the splitting

field (contained in the field of complex numbers) the auto-

morphism which maps a number into its complex conjugate

would leave fixed all the real numbers. By Corollary 1,
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If two roots are left fixed, then all the roots are left

fixed, so that If the equation has two real roots all Its

roots are real.

P. Ruler and Compass Constructions.

Suppose there is given in the plane a finite number

of elementary geometric figures, that Is, points, straight

lines and circles. We seek to construct others which satisfy

certain conditions in terms of the given figures.

Permissible steps in the construction will entail

the choice of an arbitrary point Interior to a given region,

drawing a line through two points and a circle with given cen-

ter and radius, and finally intersecting pairs of lines, or

circles, or a line and circle.
*

Since a straight line, or a line segment, or a circle

Is determined by two points, we can consider ruler and

compass constructions as constructions of points from given

points, subject to certain conditions.

If we are given two points we may Join them by a

line, erect a perpendicular to this line at, say, one of the

points and, taking the distance between the two points to be

the unit, we can with the compass lay off any Integer n on

each of the lines. Moreover, by the usual method, we can draw

parallels and can construct m/n. Using the two lines as axes

of a cartesian coordinate system, we can with ruler and compass

construct all points with rational coordinates.

If a,b,c,... are numbers Involved as coordinates of

points which determine the figures given, then the sum, prod-

uct, difference and quotient of any two of these numbers can
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be constructed* Thus, each element of the field R(a,b,c,...)

which they generate out of the rational numbers can be

constructed.

It is required that an arbitrary point is any

point of a given region. If a construction by ruler and com-

pass is possible, we can always choose our arbitrary points as

points having rational coordinates. If we Join two points with

•coefficients in R(a,b,c,...) by a line, its equation will have

coefficients in R(a,b,c,...) and the intersection of two such

lines will be a point with coordinates in R(a,b,c,...). The

equation of a circle will have coefficients in the field if

the circle passes through three points whose coordinates are in

the field or if its center and one point have coordinates in

the field. However, the coordinates of the intersection of two

such circles, or a straight line and circle, will Involve

square roots.

It follows that if a point can be constructed with a

ruler and compass, its coordinates must be obtainable from

R(a,b,c,...) by a formula only involving square roots, that is,

its coordinates will lie in a field R8 3 R8-i ̂  ••• ~*
 Rl *

R(a,b,c,...) where each field R̂  is splitting field over R̂ .j.

of a quadratic equation x2- a a 0. It follows (Theorem 6,

p. 15) since either Rj * R̂ .̂  or (Rj/Ri.i) * 2, that (Rg/R̂ ) is

a power of two. If x is the coordinate of a constructed point,

then (RiM/fei.MRi/bjLU)) - (R8/Rx) » 2
V »o that R̂ x)̂

must also be a power of two.

Conversely, if the coordinates of a point can be ob-

tained from R(a,b,c,...) by a formula Involving square roots

only, then the point can be constructed by ruler and compass.
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For, the field operations of addition, subtraction, multiplica-

tion and division may be performed by ruler and compass con-

structions and, also, square roots using l:r * r:r^to obtain

r = \/rJ may be performed by means of ruler and compass

constructions•

As an illustration of these considerations, let us

show that it Is impossible to trisect an angle of 60°. Sup-

pose we have drawn the unit circle with center at the vertex

of the angle, and set up our coordinate system with X-axis as a

side of the angle and origin at the vertex.

Trisection of the angle would be equivalent to the

construction of the point (cos 20°, sin 20°) on the unit

circle. From the equation cos 30 - 4 cos3 0 - 3 cos 9, the

abscissa would satisfy 4x3 - 3x = 1/2. The reader may readily

verify that this equation has no rational roots, and is there-

fore Irreducible in the field of rational numbers. But since

we may assume only a straight line and unit length given, and

since the 60° angle can be constructed, we may take

R(a,b,c,...) to be the field R of rational numbers. A root a

of the Irreducible equation 8x3 - 6x - 1 * 0 is such that

(R(a)/R) * 3, and not a power of two.


