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II FIELD THEORY

A. Extension Flelds.

If E is a fleld and F a subset of E which, under the
operations of addition and multiplication in E, itself forms a
fleld, that 1s, if F 1s a subfield of E, then we shall call E
an extension of F. The relation of being an extension of F
will be briefly designated by F ¢ E. If «,B,7,... are elements
of E, then by F(a,B,¥,...) we shall mean the set of elements in
E which can be expressed as quotients of polynomials in
a,B,75+++ With coefficients in F. It 1s clear that F(a,B,¥,«..)
1s a field and 1is the smallest extension of F which contains
the elements a,B,7,+.+ o« We shall call F(a,B,7,...) the field
obtalned after the adjunction of the elements a,B,7,... to F,
or the fleld generated out of F by the elements a,B,”;eces « In
the sequel all fields will be assumed commutative.

If F ¢ E, then ignoring the operation of multiplica-
tion defined between the elements of E, we may conslder E as a
vector space over F. By the degree of E over F, written
(E/F), we shall mean the dimension of the vector space E over F
If (E/F) 1s finite, E will be called a finite extension.

THEOREM 6. If F, B ,E are three flelds such that
PecBCE, then
(E/F) = (B/F)(E/B).
Let AyshAgseceshy, be elements of E wl}ich are
linearly independent with respect to B and let
01, 02,...,05 be elements of B which are independent
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with respect to F. Then the products 01‘5
where 1=1,2,000,8 and J = 1,2,...,T
are elements of E which are independent with respect

to F. For D 1 123 8;4CyAy = O, then ?‘faijcin,j
»

is a linear combination of the AJ with coefficlents
in B and because the Aj were independent with res-

pect to B we have fa” C4 = O for each j. The

independence of the Ci with respect to F then re-
quires that each ay 3 = 0. Since there are r.s elem-
ents C, AJ we have shown that for each r £ (E/B)
and s S ( B/F) the degree (E/F) ® r.s. Therefore,
(E/F) 2 (B /F)(E/B). If one of the latter numbers
is infinite, the theorem follows. If both (E/B)
and ( B/F) are finite, say r and s respectively, we
may suppose that the AJ and the C; are generating
systems of E and B respectively, and we show that
the set of products ciAJ is a generating system of
E over F. Each AeE can be expressed linearly in
terms of the Aj with coefficients in B. Thus,
A= ZBJAJ- Moreover, each BJ being an element of B
can be expressed linearly with coefficlients in F in
terms of the Cy» i.e., BJ = z‘ij Cy» J=12,...,r.

Thus, A = zau C4A, and the CiAJ form an independ-

J
ent generating system of E over F.
Corollary. If F C Fl €CFy €... © F,, then

(Fo/F) = (Fy/FIMFp/R) oo (Fy/Fp ).

1) Henceforth, O will denote the zero
element of a fleld.
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B. Polynomials,.

An .expression of the form a

oxn + alxn-l + ..o tay
is called a polynomial in F of degree n if the coefficients
8,558, aTO elements of ghe fleld F and a, # 0. Multiplica-
tion and addition of polynomlals are performed in the usual
wayl).

A polynomial in F 1s called reducible in F if it 1is
equal to the product of two polynomials in F each of degree at
least one. Polynomials which are not reducible in F are
called irreducible in F.

If £(x) = g(x)eh(x) 1s a relation which holds between
the polynomials f(x), g(x), h(x) in a field F then we shall say
that g(x) divides f(x) in F, or that g(x) is a factor of f(x).
It is readily seen that the degree of f(x) is equal to the sum
of the degrees of g(x) and h(x), so that if neither g(x) nor
h(x) is a constant then each has a degree less than f(x). It
follows from this that by a finite number of factorizations a
polynomial can always be expressed as a product of irreducible
polynomials in a field F.

For any two polynomials f(x) and g(x) the division
algorithm holds, i.e., f(x) = q(x).g(x) + r(x) where q(x) and
r(x) are unique polynomials in F and the degree of r(x) 1is less
than that of g(x). Thls may be shown by the same argument as

the reader met in elementary algebra in the case of the field

of real or complex numbers. We also see that r(x) is the

1) If we speak of the set of all polynomials of
degree lower than n, we shall agree to in-
clude the polynomial O in this set, though
it has no degree in the proper sense.
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uniquely determined polynomial of a degree less than that of
g(x) such that f(x) - r(x) is divisible by g(x). We shall call
r(x) the remainder of f(x).

Also, 1n the usual way,1t may be shown that if a 1s a
root of the polynomial f(x) in F then x - @ is a factor of
f(x), and as a consequence of this that a polynomial in a fileld

cannot have more roots in the field than its degree.

Lemma , If £(x) 1s an irreducible polynomial of

degree n in F, then there do not exist two polynomials each of
degree less than n in F whose product is divisible by f(x).

Let us suppose to the contrary that g(x) and h(x) are
polynomials of degree less than n whose product is divisible by
f(x). Among all polynomials occurring in such pairs we may
suppose g(x) has the smallest degree. Then since f(x) is a
factor of g(x)°h(x) there is a polynomial k(x) such that

k(x)-£(x) = g(x) h(x).
By the division algorithm,

f(x) = q(x)-g(x) + r(x)
where the degree of r(x) 1s less than that of g(x) and r(x)# 0
since f(x) was assumed irreducible. Multiplying

f(x) = q(x)-g(x) + r(x)
by h(x) and transposing, we have
r(x)-h(x)=f(x)h(x)-q(x)+g(x)h(x)=f(x) h(x)-q(x) k(x)*£(x)
from which it follows that r(x)-h(x) is divisible by f(x).
Since r(x) has a amaller degree than g(x), this last is in con-
tradiction to the choice of g(x), from which the lemma follows.

As we saw, many of the theorems of elementary alge-
bra hold in any field F. - However, the so-called Fundamental
Theorem of Algebra, at least in 1ts customary form, does not



17

hold. It will be replaced by a theorem due to Kronecker which
guarantees for a glven polynomlal in F the existence of an ex-
tension field in which the polynomial has a root. We shall
also show that, in a given field, a polynomial can not only be
factored into irreducible factors, but that this factorization
is unique up to a constant factor. The uniqueness depends on

the theorem of Kronecker.

C. Algebraic Elements.
Let F be a fleld and E en extension fleld of F. If

a is an element of E we may ask whether there are polynomials
with coefficlents In F which have a as root. a is called
algebraic with respect to F 1f there are such polynomlals. Now
let a be algebraic and select among all polynomials in F which
have a as root one, f(x), of lowest degree.

We may assume that the highest coefficient of f(x)
is 1. We contend that this f(x) is uniquely determined, that
it 1s irreducible and that each polynomial in F with the root a
is divisible by f(x). If, indeed, g(x) 1s a polynomial in F
with g(a) = 0, we may divide g(x) = f(x)q(x) + r(x) where r(x)
has a degree smaller than that of f(x). Substltuting x =a
we get r(a) = 0. Now r(x) has to be identically O since other-
wise r(x) would have the root a and be of lower degree than
f(x). So g(x) 1s divisible by f(x). This also shows the
uniqueness of f(x). If f(x) were not irreducible, one of the
factors would have to vanish for x = a contradicting again the
choice of f(x).

We consider now the subset E; of the following elem-

ents © of E:



18

n-lan-l

o=gla) = c, * cqa + cza2 + ses t C
where g(x) is a polynomial in F of degree less than n (n being
the degree of f(x) ). This set E, is closed under addition and
multiplication. The latter may be verified as follows:

If g(x) and h(x) are two polynomials of degree less
than n we put g(x)h(x) = q(x)f(x) + r(x) and hence

g(a)h(a) = r(a). Finally we see that the constants

co, CysevesCy 5 8aTe vniquely determined by the element ©. Indeed
two expresslons for the same & would lead after subtracting to
an equation for a of lower degree than n.

We remark that the internal structure of the set E;
does not depend on the nature of a but only on the irreducible
f(x). The knowledge of this polynomial enables us to perform
the operations of addition and multiplication in our set E,,

We shall see very soon that E, 1s a fileld; in fact, Eo is

nothing but the field F(a). As soon as this is shown we have
at once the degree, (F(a)/F), determined as n, since the space
F(a) 1is generated by the linearly independent l,a,az,...,an"l.

We shall now try to imitate the set E; without having
an extension fleld E and an element a at our dlsposal. We
shall assume only an irreduclible polynomlal

£(x) = x® + an_lxn‘l + oeo toag
as glven.

We select a variable & and let E; be the
set of all polynomials

8(E) =cy + ciE+ «eu + 4 ED-1
of a degree lower than n. Thls set forms a group under

addition. We now introduce besides the ordinary multiplication
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a new kind of multiplication of two elements g(£) and h(&)
of E; denoted by g(£) x h(f). It is defined as the remalnder
r(E) of the ordinary product g(£) h(Z) under division by
(). We first remark that any product of m terms
81(£),85(£),+.., 8(£) 18 again the remainder of the ordinary
product g9(£) €o(&) «.. 8,(E)e This is true by definition for
m = 2 and follows for every m by induction if we just prove the
easy lemma: The remainder of the product of two remainders
(of two polynomials) is the remainder of the product of these
two polynomials. This fact shows that our new product is
associative and commutative and also that the new product
81(8) x 8 5(£) x ..o x E,(£) will coinclde with the old prod-
uct g,(£) gg(£)e.. gp(£) 1f the latter does not exceed n in
degree. The distributive law for our multiplication is readily
verified.

The set E, contains our field F and our multiplica-
tion in E; has for F the meaning of the old multiplication.
One of the polynomials of E, 1s . Multiplying it 1-times
with 1itself, clearly will just lead to 51 as long as 1 < n.
For 1 = n this 1s not any more the case since it leads to the

remainder of the polynomial gn. This remainder is

n n-1l n-2
£ - f(€)=‘an~1§ - an_zg - ece = ao.
We now give up our old multiplication altogether and
keep only the new ones we also change notatlon, using the
point (or juxtaposition) as symbol for the new multiplication.
Computing in this sense
ey, * CE + cE2 + .uu LI et
will really lead to this element, since all the degrees inw-

volved are below n. But
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g0 = - an_lgn"l - an_zgn'z - eee =8,
Transposing we see that £(£) = O.

We thus have constructed a set E, and an addition and
multiplication in E, that already satisfles most of the field
axioms. E1 contalns F as subfleld and £ satlsfles the equation
£(£) = 0. We next have to show: If g(£)#0 and h(E) are glven
elements of El' there 1s an element

XE) = x +xE+ ...+ xn_lgn'l

in El such that
g(g)e x(g) = h(g).

To prove 1t we consider the coefficients x; of X(&) as un-
knowns and compute nevertheless the product on the left side,
always reducing higher powers of £ to lower ones. The result
1s an expression L + Li& + ... + Ln_lgn'l where each L, 1is
a linear combination of the x; with coefficlents in F. This
expression 1s to be equal to h(Z); this leads to the n

equations with n unknowns:

L°=b°’ I:.:bl’.."l'n-labn-l

where the by are the coefficlents of h(Z). This system will

be soluble if the corresponding homogeneous equations

Ib=0, L.l.=°’ eoe Ln_1=0

have only the trivial solution.

The homogeneous problem would occur if we should ask
for the set of elements X(&) satisfying g(&)-X(g) = 0.
Going back for a moment to the old multiplication this would
mean that the ordinary product g(&) X(Z) has the remainder O,
and is therefore divisible by f(£). According to the lemma,
page 16, this is only possible for X(&) = 0.
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Therefore El 1s a fleld.

. Assume now that we have also our old extension E with
a root a of f(x), leading to the set Eo‘ We see that Eo has in
a certain sense the same structure as El if we map the element
g(£) of E; onto the element g(a) of E,. This mapping will
have the property that the image of a sum of elements 1s the
sum of the images, and the lmage of a product is the product of
the images.

Let us therefore define: A mapping ¢ of one field
onto another which is one to one in both directlions such that
o(a+p) = o(a) + o (B) and o(a+B) = o(a)e o(B) 1s called
an isomorphism. If ths flelds in question are not distinct =-
i1.e., are both the same fleld - the isomorphism 1s called an
automorphism. Two flelds for which there exists an isomorphism
mapping one on another are called 1somorphic. If not every
element of the image field is the image under ¢ of an element
in the first fleld, then ¢ 1s called an isomorphlsm of the
first fleld into the second. Under each isomorphism it 1s
clear that o(0) = 0 and o (1) = 1.

We see that E ) 1s also a fileld and that 1t 1s iso-
morphic to El'

We now mention a few theorems that follow from our
discussion:

THEOREM 7. (Kronecker) If f(x) is a polynomial in

a field F, there exlsts an extension E of F in which f(x) has

a root.
Proof: Construct an extension field in which

an irreducible factor of f(x) has a root.
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THEOREM 8¢ Let o be an isomorphism mapping a field
F ona field F'. TLet f(x) be an irreducible polynomial in F
and f{x) the corresponding polynomial in F'. If E = F(3) and

E!' = F'(3') are extenslons of F and F!', respectively,where
f(B) =01InE and f'(B') = 0 in E!', then ¢ can be extended to

an isomorphism between E and E'.

Proof: E and E' are both isomorphic to Eo'

D. Splitting Fleids.
If F, B and E are three fields such that Fc B c E

then we shall refer to B as an intermediate field.

If E 1s an extension of a field F in which a poly-
nomlal p(x) in F carn be factored into linear factors, and if
p(x) can not be so factored in any intermediate field, then we
call E a splitting fleld for p(x). Thus, i1f E 1s a splitting

fleld of p(x), the roots of p(x) generate E.
A splitting fleld is of finite degree since it is

constructed by a finite number of adjunctions of algebraic
elements, each defining an extension fileld of finlte degree.
Because of the Corollary on page 14, the total degree 1s finite.

THEOREM 9. If p(x) is a pol al in a field F
there exists a splitting field E of p(x).

We factor p(x) in F into irreducible factors
£1(x)ececefp(x) = p(x). If each of these is of the
first degree then F 1tself is the required splitting
field. Suppose then that rl(x) 1s of degree higher
than the first. By Theorem 7 there is an extension
F, of F in which rl(x) has a root. Factor each of
the factors f;(x),...,f,(x) into irreducible factors
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in P and proceed as before. We finflly arrive at a
field in which p(x) can be split into linear factors.
The fleld generated out of F by the roots of p(x) is
the required splitting fleld.
The following theorem asserts that up to lsomorphisms,
the splitting field of a polynomlal 1s uniqus,.
THEOREM 10. Let ¢ be en isomorphism mapping the

field F on the fleld F!, Let p(x) be a polynomial in F and

p'(x) the polynomial in F'! with coefficlents corresponding to

those of p(x) under 6. Finally, let E be a splitting fisld

of p(x) and E' a splitting field of p'(x). Under these con-

ditions the isomorphism ¢ can be extended to an isomorphism

between E and E'.

If £(x) is an irreducible factor of p(x) in F,
then E contains a root of f(x). For let
p(x) = (x-a;)(x-ay)...(x-a;) be the splitting or
p(x) in E. Then (x-al)(x-az)...(x-as) = f(x).g(x).
We consider f(x) as a polynomial in E and construct
the extension field B = E(a) in which f(a) = 0.
Then (a-a;):(a-a5)+...+(a-agz) = f(a)+g(a) = 0 and
a-ay being elements of the fleld B can have a prod-
uct equal to 0 only if for one of the factors, say
the first, we have a-a; = 0. Thus, a = @y, and a;
is a root of f(x).

Now in case (E/F) = 1, then E = F and p(x) can
be split in F. This factored form has an image in
F'! which 1s a splitting of p'(x), since the 1iso-
morphism o0 preserves all operations of addition and

multiplication in the process of multiplying out the
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factors of p(x) and collecting to get the original
form. Since p'(x) can be split in F!, we must have
F! = E!, In this case, ¢ itself is the required
extension and the theorem is proved if (E/F) = 1.

We proceed by complete induction. Let us sup-
pose the theorem proved for all cases in which the
degree is less than n > 1, and suppose (E/F) = n. We
factor p(x) into irreducible factors in F;

p(x) = rl(x)-fz(x)-...nfm(x). Not all of these
factors can be of degree 1, since otherwise p(x)
would split in F, and we should have (E/F) = 1 con-
trary to assumption. Hence, we may suppose the
degree of f,(x) to be r > 1. Let
f]'.(x)-rz'(x)n..-t"‘(x) = p!{x) be the factorization of
p'(x) into the polynomials corresponding to
fl(x),...,fm(x) under o. fi(x) is irreducible in
F!, for a factorization of r]'.(x) in F! would 1nducel)
under 01 a factorization of rl(x), which was
however taken to be irreducible. Let a be a root

of fl(x) in B and a' a root of ri(x) in E'. We

have (F(a)/F) = (F'(a')/F!') = 2> > 1,

Also, by Theorem 8, the isomorphism o can be
extended to an isomorphism Sy, between the fields
P(a) and F'(a').

Since F € F(a), p(x) 1s a polynomial in P(a) end
E 1s a splitting field for p(x) in F(a). Similarly
for p'(x). But (E/F) = (F(a)/F)(E/F(a)) = r<(B/F(a)).
Hence, (B/F(a)) < n, and, by our inductive assumption,

1) See page 350 for the definition of o1,
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o, can be extended from an isomorphism between F(a)
and F'(a') to an isomorphism 0o between E and E’.
Since o is an extension of 0, and Op &N extension
of 0y, then % 1s an extenslon of ¢ and the theorem
follows.

Corollary: If p(x) is a polynomial in a field F,

then any two splitting fields for p(x) are isomcrphic.

This follows from Theorem 10 if we take F = F!
and ¢ to be the identity mapping, i.e., o(x) = x.

As a consequence of this corollary we see that we are
Justified in using the expression "the splitting field of p(x)"
since any two differ only by an isomorphism. Thus, if p(x) has
repeated roots in one splitting fileld, so also in any other
splitting field 1t will have repeated roots. The statement
"p(x) has repeated roots™ will be significant without reference
to a particular splitting fleld.

E. Unique Decomposition of Polynomlals into Irreducible Factors.

THEOREM 11. If p(x) 1s a lynomial in a field F
and 1f p(x) = py(x)epy(x)ecsc-pr(x) = qy(x)eqy(x)ecssqy(x)
are two factorizations of p(x) into irreducible polynomials

each of degree at least one, then r = s and after a suitable

change in the order in which the g's are written,

pi(x) = ciqi(x), 1=1,2,..., and c e F.
Let F(a) be an extension of F in which
pl(a) = 0, We may suppose the leading coefficlents
of the pi(x) and the qi(x) to be 1, for, by factoring
out all leading coefficients and combining, the con-
stant multiplier on each side of the equation must be



the leadine coefficient of p(x) ana nence can be
divided out of both sides of the equatior. Since

0 =p,(a}-py(a)e...op (a) = pla) = g la)+...eq (a)
and sinrce a product of elements of F(a) can be O only
1f ore of these iz 0, it follows that one of the
qi(a), say ql(a), is 0. This glves (see page 17)
p,(x) = q,(x). Thus p (x)ep,(Z)-...°p (x)

= py(x)eGy{x)ee.0eq (x) or

pl\'x)-[pe(x)-..upr(x) - qz(x)'...-qs(x)] = 0. Since
the product of two polyndmials 1s O only if one of
the two i1s the O polynoemisl, 1t follows that the
polynomial withir the brackets is 0 so that
l;g(x)o...-pr(x) = qe(x)-...oqs(x). If we repeat the
above argument r times we obtain

pi(x) = qi(x),. i=1,2,...,r« Since the remaining
q's mist have a product 1, it follows that r = s,

F. Group Characters.
If G is a multiplicative group, F a fleld an® ¢ a

homomorphism mapping G into F, then o 1s called a character of
G in F. By homomorphism is meant a mapping ¢ such that for
a, B any two elements of G, o(a)+o(p) = o(ap) and o(a) ¥ O
for any a. (If o(a) = O for one element a, then o(x) = 0 for
each xe@, since d(ay) = o(a)+o(y) = 0 and ay takes all values
in G whken y assumes all values in G).

The characters 0y, 0, ++.,0, are called cependent
if there exist elements 83,8p,¢00,8, not all zero in F such
that 8,0,(x) + agop(x) + ... + a,0,(x) = O for each xeG.

Such a dependence relation is called non-trivial. If the
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characters are not dependent they are called lndependent.

THEOREM 12. Ir 01350 gseces0 are n mutuslly dis-

n

tinct characters of a group G in a field F, then

cl, [+ PYRLLY On are independent.
One character cannot bo dependent, since

8y 0 l(x) = 0 implies a = 0 due to the assumpt.on
that o,{a) # 0. Suppose n>1l. We make the induct-
ive assumption that no set of less than n distinct
characters is dependent. Suppose now that

alol(x) + azaz(x) + .0 +8.0 l_l(x) =0 1is a non-
trivial dependence between the o's. Nore of the
elements ay 1s zero, else we should have a depend-
ence between less than n characters contrary to our
inductive assumption. 3ince o, and © n 8re distinct
there exists an element a in G such that

o,(a) # o (a). Multiply the relation between the
o's by cn‘l. We obtain a relation

(*) byoy(x) + ... +b, 0 .(x)+0 (x)=0,

b, = a"la, # 0.

Replace in this relation x by ax. We have
blcl(g)ol(x) + ... 4+ bn_lcn_l(a)on_]_(x)-ran(a)qn(x)aq
or o (a)lb0,(a)0,(x) + ... +0 (x) = 0.
Subtracting the latter from (*) we have

%) [b3- 6 ,(a)"2b10,(@)]0y (x)4. . be, g 0 1(x) = O
The coefficient of ol(x) in this relation is not 0O,
otherwise we should have b,= on(a)'1b1 ol(a), so that
cn(a)bl = blcl(a) = al(a)bl

and since by # 0, we get an(a.) = ol(c) contrary to
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the choice of a. Thus, (*%*) is a non-trivial depend-
ence between 0950050000 4 which 1s contrary to
our inductive assumption.
Corollary: If E and E! are two flelds, and

01, ] 2 ...,on are n mutually distinct isomorphisms

mapping E into E', then °1”“’°n are independent.

(Where "independent" again means there exists no non-
trivial dependence a, 0 l(x) * oeee ¥ ancn(x) =0
which holds for every xeE).

This follows from Theorem 12, since E without the
0 is a group and the o's defined in this group are

mutually distinct characters.

Ir 0150 gseee0  are 1somorphisms of a field E into a

n
field B!, then each element a of E such that

al(a) = oz(a) = ... 'cn(a) is called a fixed point of E
under 0150 gsecesOpe This name is chosen because in the
case where the o's are automorphisms and o, is the identity,
1.e., 0;(x) = x, we have oy(x) = x for a fixed point.

Lemma The set of fixed points of E 1s a subfield

of E. We shall call this subfield the fixed fleld.

For if a and b are fixed points, then
ci(u-b) = 0,(a) + oi(b) = °j(‘) + oj(b) = oj(a-l-b) and
ci(aob) = oi(c)- °i(b) = cj(a)- °j(b) = oj(n-b).
Finally from o4(a) = oj(a) we have (oi(a))"l- (cj(n))'l
= o,(a7l) = oJ(o'l).
Thus, the sum and product of two fixed points 1s a fixed point,

and the inverse of a fixed point 1s a fixed point. C(Clearly,
the negative of a fixed point 1s a fixed point.
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THEOREM 13. _:E.'_ 01, vees0  8ren mutually distinct

isomorphisms of a field E into a fleld E', and if F 1s the

fixed field of E, then (E/F) 3» n.

Suppose to the contrary that (E/F) = r < n. We
shall show that we are led to a contradiction. Let
ml, "’2""’ wr be a'genornting system of E over F. In
the homogeneous linear equations

01( t-)z)x:l + c:z(me)x2 ¥ ees ¥ °n( uz)xn =0

01( ur)xl + °2( wr)xz * oo on(ﬂr)xn =0
there are more unknowns than equations so that there
exists a non-trivial solution which,we may suppose,
xl,xz,...,xn denotes. For any element ¢ in E we can
find 31"2"”"‘1- in F such that a = 800 + oot a0,
We multiply the first equation by cl(ul), the second
by 01(12) and so on. Using that a,eF, hence that
0y(ay) = o4(ay) and also that oj(li)ooj( ui)acj(‘imi)’

we obtain
ol(alul)ﬁ * oo P cn(.lwl)zn =0
ol(arur)xl oo # °n(“r"’r)xn = 0.
Adding these last equations and using
0y(a)0,) + 04lagey) + .o # 0 (a,0,)
= oi(al(o

1 * ee. + aror) = 01(“)

we obtaln
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ol(a)xl +02(a)x2 * vee + on(a)xn = 0.
This, however, 1s a non-trivial dependence relation
between 01502500050, which cannot exist according
to the Corollary of Theorem 12.

Corollary: If 0_.,0_,...,0 are automorphisms of
—_— = Y72 n

the fleld E, and F 1s the fixed fleld, then (E/F) > n.

If F 1s a subfleld of the field E, and 0 an
automorphism of E, we shall say that o leaves F fixed if for
each element a of F, o(a) = a. If 6 and T are two automor-
phisms of E, then the mapping o(T(x)) written briefly ot
is an automorphism, as the reader may readily verify. [E.g.,
ot(xy) = o(T(x+y)) = o(r(x)-T(y)) = o(T(x))-o(t(y)) I.
We shall call oT the product of ¢ and T. If o0 1s an
automorphism (o(x) = y), then we shall call ol the mapping
of y into x, 1l.e., a'l(y) = x the inverse of ¢ . The reader
may readily verify that 6=l 1s an automorphism. The auto-
morphism I(x) = x shall be called the unit automorphism.

Lemma. If E is an extension fleld of F, the set G

of automorphisms which leave F fixed is a L _group.

The product of two automorphisms which leave F fixed
clearly leaves F fixed. Also, the inverse of any automorphism
in ¢ 1s in G,

The reader will observe that G, the set of automorph-
isms which leave F fixed, does not necessarily have F as its
fixed field. It may be that certain elements in E which do
not belong to F are left fixed by every automorphism which
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leaves F tixed. Thus, the fixed fleld of G may be larger thanF

G. Normal Extensions.

An extension fleld E of a fleld F is called a normal
extension 1f the group G of automorphisms of E which leave F
fixed has F for its fixed fleld, and (E/F) is finite.

Although the result in Theorem 13 cannot be sharpened
in general, there 1s one case in which the equality sign will
always occur, namely, in the case in which ol’ 02,..., °n is

a set of automorphisms which form a group. We prove

THEOREM 14. Ir 01,02,...,on 1s a group of auto-

morphisms of a field E and if F 1s the fixed fleld of

Gys Opsees,0,, then (E/F) = n.

Ir ol, 02,..., on is a group, then the identity
occurs, say, 01 = I. The fixed field consists of
those elements x which are not moved by any of the
c's, 1.e,, ai(x) =x, 1 =1,2,...n. Suppose that
(E/F) > n. Then there exist n + 1 elements

al, a p?eces a of E which are linearly independent

n+l
with respect to F. By Theorem 1, there exists a non-

trivial solution in E to the system of equations
xofay) ¥ 20 (@) % e+ x 9 (a ) =0

(" xloz( al) + xzcz( nz) + ... + xn+1°2(an+1) =0

@ ® o o o 6 o o o © o o ° e o o 0 o o o o ° o L]

xlon( al) + xzcn( c2) + ... + xn+1°n(“n+1) =0.

We note that the solution cannot lie in F, otherwise,
since o4 1s the identity, the first equation would be

a dependence between al, e, @ n+l
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Among all non-trivial solutions xl,xz,...,xnﬂ

choose one which has the least number of elements

we

different from O. We may suppose this solution to be
8,,85,000,8,, 0yeee,0, where the first r terms are diff-
erent from 0. Moreover, r # 1 because ‘1°1(°'1) =0
implies a, = O since °1(“1) =q, # 0. Also, we may sup-
pose a, =1, since 1f we multiply the given solution by
ar‘l we obtain a new solution in which the r'P term
is 1. Thus, we have
(#) aj04(ay) + agoy(ag) + ... + ar_lci(ar_l)*di(ar) =0
for 1 =1,2,,..,n; Since "1"""1'-1 cannot all belong
to F, one of these, say 8, is in E but not in F. There
is an automorphism %y for which °k("1) # a. If we
use the fact that 01,02,...,cn form a group, we see
0p°91» Op°Cgress,0,°0, 1s a permutation of
G1s0gs 000,00 Applying °k to the expressions in (%)
we obtain

°k"‘1)'°k°j(°1) + cee +°k(°‘1\-1)'°k°j(az-1) +°koj(ar)=0
for § =1,2,s..,r, 80 that from °k°j =0,
(%) o (a,)0,(a)) + oo0 40, (a ,)ofa )+ 0fa)=0
and if we subtract (#s») from (*) we have
lay - op(ay)]e ofa)) + coo + oy -0y (ay  )l0a, y)=0
which is a non-trivial solution to the system (') having
fewer than r elements different from O, contrary to the
choice of r.
Corollary 1: If F i1s the fixed field for the finite

group G, then each automorphism o that leaves F fixed
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must belong to G.

(E/F) = order of G = n. Assume there 1s a ¢ not
in G. Then F would remalin fixed under the n#l elements
consisting of ¢ and the elements of G, thus contradict-
ing the Corollary to Theorem 13.

Corollary 2: There are no two groups Gy and Gy ﬁh_

the same fixed fileld.

This follows immediately from Corollary 1.
If £(x) 1s an irreducible polynomial in F, then f(x) is
called separable 1f 1t does not have repeated roots. If E 1s

an extenslon of the fleld F, the element a of E is called

separable if it is root of a separable polynomial f(x) in P,

and E 1s called a separable extension if each element of E 1s

separable.

THEOREM 15. E 1s a normal extension of F if and only
if E 1s the splitting field of a polynomial p(x) in F whose

irreducible factors are separable.

Sufficiency. Under the assumption that E splits
p(x) we prove that E 1s a normal extension of F.

If (E/F) = 1, then our proposition is trivial,
since then E = F and only the unit automorphism leaves
F flxed.

Let us suppose that (E/F) = n > 1. We make the
inductive assumption that for all pairs of fields with
degree less than n our proposition holds.

Let p(x) = p,(x)-py(x)e.c.-p (x)

be a factorization of p(x) into separable factors. We
may suppose one of these to have a degree greater than
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one, for otherwise we should have (E/F) = 1. Suppose

deg Py (x)
(F(al )/F)

8 >1. Let a; be a root of p,(x). Then
deg pl(x) = 8. From (E/F(al))-(F(al)/F)

= (E/F) = n it follows that (E/F(a;)) < n. From the
fact that p(x) lies in F(al) and E is a splitting fleld
of p(x) over F(al), it follows by our inductive assump-
tion that E is a normal extension of F(al). Thus, each
element in E which is not in F(a.l) 1s mdoved by at least
one automorphism which leaves F(al) fixed.

pl(x) being separable its roots L PYEREY a s
are s distinct elements of E. By Theorem 8 there exist
isomorphisms o_, o

1 2
F(az),...,F(as),, respectively, which are each the ident-

seees0y mapping F(al) on F(al),

1ty on F and map @) on a,, T pyeees @y respectively.
Since o0, 1s the identity mapping, the fixed field F!
of al,...,as consists of those elements of F(Gl)
which are not moved by any one of the mappings

0150 5500050 0 The isomorphisms o 17 O greees g
are mutually distinct since ay has s different images.
Therefore, by Theorem 13, (F(al)/F') = 8. Since F c F!,
(F'/F)-(F(al)/F') = (F(al)/F) = 3, from which 1t follows
that (F(al)/F') € 8, and this combined with the preced-
ing inequality gilves (F(al)/F') = 8. This implies
(F'/F) =1 or F = F'. Each point of F(al) which is not
in F 1s moved by one of the mappings Gqs 02,... Og-

We now apply Theorem 10. E 1s a splitting field of

p(x) in F(al) and 1s also a splitting field of p(x) in
F(ai). Hence, the isomorphism o;, which makes p(x) in
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F(al) correspond to the same p(x) in F(ai), can be ex-
tended to an isomorphic mapping of E on E, that 1s, to
an automorphism o4.

The sufficiency 1s now established. For, any elem-
ent of E which is not in F, either is not in F(al) and 1is
then moved by an automorphism which even leaves F(al)
fixed, or else is in F(al) and is then moved by one of
the automorphisms o ]'_, .o .,os' .

Necessity. If E 1s a normal extension of F, then
E 1s splitting field of a polynomial p(x) whose irred-
ucible factors are separable. We first prove the

Lemma. If E is a normal extension of F, then E is a

separable extension of F.

Let qlf 02,..., os be the group G of automorphisms of
E whose fixed field 1s F. Let a be an element of E, and let
a,az,as,...,ar be the set of distinct elements in the sequence
ol(a.), oz(a),...,os(o:). Since G is a group,
cJ(ai) = oJ(ck(a)) = °j°k(°') = om(a) =a.
Therefore, the elements a,az,...,ar are permuted by the auto-
morphisms of G. The coefficients of the polynomial
£(x) = (x-a)(x-az)...(x-ar) are left fixed by each automor-
phism of G, since in 1ts factored form, the factors of f(x) are
only permuted. Since the only elements of E which are left
fixed by all the automorphisms of G belong to F, f(x) is a
polynomial in F. If g(x) 1s a polynomial in F which also has
a as root, then applying the automorphisms of G to the express-
lon g(a) = O we obtaln glay;) = 0, so that the degree of

g(x) > s. Hence f(x) is irreducible, and the lemma ls
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established.

To complete the proof of the theorem, let 0y, 000,0¢
be a generating system for the vector space E over F. Let
fi(x) be the separable polynomial having ®; as a root. Then
E 1s the splitting field of p(x) = fl(x)-fz(x)-...-rt(x).

If £(x) is a polynomial in a field F, and E the
splitting field of f(x), then we shall call the group of auto-
morphisms of E over F the group of the equation f(x) = 0. We
come now to a theorem known in algebra as the Fundamental
Theorem of Galoils Theory which gives the relation between the
structure of a splitting field and its group of automorphisms.

THEOREM 16. (Fundamental Theorem). If p(x) is a
polynomial in a field F, and G the group of the equation

p(x) = 0, where E 18 the splitting fleld of p(x), then:
(1) Each intermediate field is the fixed field for a subgroup

GB of G, and distinct subgoups have distinct fixed flelds.

We say B and Gpg "belong" to each other. (2) The inter-

mediate field B 1s a normal extension of F if and only if the

subgroup Gp 1s a normal subgroup of G. In this case the

group of automorphisms of B which leaves F fixed is isomorphic

to the factor group (G/GB). (3) For each intermediate field
B, we have ( B /F) = index of GB and (E/B) = order of

Gp .

The first part of the theorem comes from the
observation that E is splitting field for p(x) when
p(x) is taken to be in any intermediate field. Hence,
E is a normal extension of each intermediate field B ,
so that B 1s the fixed fleld of the subgroup of G
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consisting of the automorphisms which leave B fixed.
That distinct subgroups have distinct fixed flelds is
stated in Corollary 2 to Theorem 14.

Let B be any intermediate field. Since B is
the fixed fleld for the subgroup GB of G, by Theorem
14 we have (E/B) = order of GB' Let us call o(G)
the order of a group G and 1(G) its index. Then
o(@) = o(GB)'i(GB). But (E/F) = o(G), and
(E/F) = (E/B)+(B/F) from which (B/F) = 1(Gg), which
proves the third part of the theorem.

The number 1(GB) is equal to the number of left
cosets of GB. The elements of G, being automorphisms
of E, are isomorphisms of B; that is, they map B 1so0-
morphically into some other subfield of E and are the
identity on F. The elements of G in any one coset of
G, map B in the same way. For let o-c and

B 1
g«0_ be two elements of the coset GGB. Since

o f.nd L leave B fixed, for each a in B we have

ool(a) = o(a) = ocz(a). Elements of different cosets
give different isomorphisms, for 1f ¢ and T give the
same isomorphism, o(a) = T(a) for each a in B, then
6~1t(a) = ¢ for each a in B. Hence, o-1lt = o, , where
oy is an element of GB' But then T = 0o, and

'I:‘GB = acle = 0G. 80 that 0 and T belong to the same

B
coset.

Each isomorphism of B which is the identity on F
is given by an automorphism belonglng to G. For let

C be an lsomorphism mapping B on B! and the identity
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on F. Then under o, p(x) corresponds to p(x), and E
1s the splitting fleld of p(x) in B and of p(x) in B!,
By Theorem 10, o can be extended to an automorphism

o! of E, and since o' leaves F fixed it belongs to G.
Therefore, the number of distlnct isomorphisms of B

is equal to the number of cosets of GB and 1is therefore
equal to (B/F).

The field oB onto which ¢ maps B has obviously
oGBa‘1 as corresponding group, since the elements of
0B are left lnvariant by precisely this group.

If B is a normal extension of F, the number of
distinct automorphisms of B which leave F fixed is
(B/F) by Theorem 14. Conversely, if the number of
automorphisms is (B/F) then B is a normal extension,
because 1f F! 1s the fixed fleld of all these auto-
morphisms, then F € F! € B, and by Theorem 14, (B/F!')
is equal to the number of automorphisms in the group,
hence (B/F') = (B/F). From (B/F) = (B/F!')(F'/F)
we have (F!'/F) =1 or F = F!., Thus, B 1s a normal
extension of F 1f and only if the number of automorph-
isms of B is (B/F).

B 1s a normal extension of F 1f and only if each
isomorphism of B into E 1s an automorphism of B.

This follows from the fact that each of the above con-
ditions are equivalent to the assertion that there are
the same number of isomorphisms and automorphlsms.
Since, for each o, B = ¢B 13 equivalent to

o601 c GB’ we can filnally say that B 1s a normal

B
extension of F if and only 1if GB is a normal
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subgroup of G.

As we have shown, each isomorphism of B 1s des-
cribed by the effect of the elements of some left coset
of GB . If B 1is a normal extension these isomorph-
isms are all automorphisms, but in this case the cosets
are elements of the factor group (G/GB) . Thus, each
automorphism of B corresponds unlquely to an element
of (G/GB) and conversely. 8ince multiplication in
(6/Gg) 1s obtained by iterating the mappings, the
correspondence 1s an isomorphlsm between (G/GB ) and
the group of automorphisms of B which leave F fixed.
This completes the proof of Theorem 1l6.

H. Finite Fields.
It 1s frequently necessary to lmow the nature of a

finite subset of a field which under multiplication in the
field 1s a group. The answer to this question 1s particularly

simple.
THEOREM 17. If S is a finite subset (# 0) of a fleld

F which 1s a group under multiplication in F, then S 1s a

cyclic group.
The proof 1s based on the followling lemmas for

abellian groups:

Lemma 1. If in an abeliangéfpup A and B are two

elements of orders a and b, and if ¢ 1s the least common mul-

tiple of a ad b, then there is an element C of order c in the

group.
Proof: (a) If a and b are relatively prime, C = AB

has the required order ab. The order of ¢® = B® is b and
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therefore ¢ is divisible by b. Similarly it is divisible by a.
Since ¢*° = 1 1t follows ¢ = ab.

(b) If d is a divisor of &, we can find in the
group an elemsnt of order d. Indeed A'/d is this element.

(c) Now let us consider the general case. Let
pl,pg....,pr be the prime numbers dividing either a or b and

let n n n
a= p:'h:‘-p2 2""1- r
my mg my,
b= pl p8 ...pr .
Call ti the larger of the two numbers n, and m, . Then
t, ¢ t
1 2 r
c= pl pg -oopr .

According to (b) we can find in the group an element of order
p1n1 and one of order pim’- « Thus there is one of order piti.
Part (a) shows that the product of these elements will have the
desired order o.

Lemma 2. If there is an element C in an abelian

group whose order ¢ is maximal (as is always the case if the

group 1s finite) then ¢ is divisible by the order a of every

element A in the group; hence x® = 1 is satisfied by each

slement in the group.
Proof: If a does not divide ¢, the greatest common

multiple of a and ¢ would be larger than ¢ and we could find
an element of that order, thus contradicting the cholce of c.

We now prove Theorem 17. Let n be the order of 8
and r the largest order occurring in 8. Then x* =1 = 0 is
satisfied for all elements of S. 8Since this polynomial of
degree r in the field cannot have more than r roots, it follows
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that r > n. On the other hand r € n because the order of each
element divides n. 8 is therefore a cyclic group consisting of
1,¢e,¢2,...,e0"1 where &= 1.

By a finite field is meant one having only a finite
number of elements.

Corollary:. The non-gero elements of a finite field

form a cyclic group.

If a 1s an element of a field F, let us denote the
n-fold of a, 1.e., the element of F obtalned by adding a to
itself n times, by na. It is obvious that ne(mea) = (nm)ea and

(nea)(med) = nmeab. If for one element a ¥ O, there is an
integer n such that nca = 0 then n+d = 0 for each b in F, since
ned = (n-a)+(a~lp) = 0-a”lv = 0. If there is a positive integ-
er p such that psa = 0 for each a in F, and if p is the small-
est integer with this property, then F is said to have the
characteristic p. If no such positive integer exists then we
say F has characteristic O. The characteristic of a field is
always a prime number, for if p = res then pa = rs-a = re(s-a).
However, sa = b ¥ 0 1f a ¥ O md r+b # 0 since both r and s
are less than p, so that pa ¥ 0 contrary to the definition of
the characteristic. If na = 0 for a # 0, then p divides n, for
nsqpé+rwhere 0 r<pandna=(qp+ r)a=gqpa + ra.
Hence na = O implies ra = 0 and from the definition of the
characteristic since r < p, we must have »r = Q,

If P is a finite field having q elements and E an
extension of F such that (E/F) = n, then E has q® elements.
For 1if 01, 02,..., “n is a basis of E over F, each element of

E can be uniquely represented as a linear combination
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ﬁwl + X0 + oee * X% where the x, belong to F. 8ince

each x, can assume q values in F, there are q" distinct pos-

1

sible cholces of xl,... ' Xn and hence q distinct elements of

E. E is finite, hence, there is an element a of E so that

E = F(a). (The non-gzero elementsof E form a cyclic group
generated by an olement a).

If we denote by P = [0,1,2,...,p-1] the set of mul-
tiples of the unit element in a field F of characteristic p,
then P 1s a subfield of F having p distinct elements. In fact,
P 1s isomorphic to the fleld of integers reduced mod p. If F
is a finite field, then the degree of F over P is finite, say
(F/P) = n, and P contains pn elements. In other words, the
order of any finite field is a power of its characteristic.

If F and F' are two finite fields having the same

order q, then by the preceding, they have the same character-
istic since q is a power of the characteristic. The multiples
of the unit in F and F! form two flelds P and P' which are
isomorphic.

The non-gero elements of F and F' form a group of
order q - 1 and, therefore, satisfy the equation x3°1 - 1 = o,
The fields F and F! are splitting fields of the equation x3-1=
considered as lying in P and P! respectively. By Theorem 10,
the isomorphism between P and P! can be extended to an iso-
morphism between F and F'. We have thus proved

THEOREM 18. Two finite fields having the same num-

ber of elements are isomorphic.

Differentiation. If f(x) = Gt X+ .. * lnxn
is a polynomial in a field F, then we define
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£ = a) + 280x + ... + nnnxn"l. The reader may readily verify
that for each pair of polynomials f and g we have
(f+g)t=1"+g
(Leg)! = fg! 4 gt
() = ne™loge

THEOREM . The polynomial f has repeated roots if and

only if in the splitting field E_the polynomials f and f' have

a common root. This condition 1s equivalent to the assertion

that £ and f' have a common factor of degree greater than

0 in F.

If @ is a root of multiplicity k of f(x) then
L= (x-a)kQ(x) where Q(a) ¥ 0. This gives

£ = (x-a)Qu() + x(x-a)1Q(x)
= (x-a) " [(x-2)Q" (x) + KQ(x)]

If k> 1, then @ is a root of f£' of multiplicity at
least k - 1. If k = 1, then £!(x) = Q(x) + (x-a)Q'(x)
and f'(a) = Q(a) # 0. Thus, £ mmd f' have a root a in
common 1f and only if q 1s a root of f of multiplicity
greater than 1.

If £ and £' have a root a in common then the
irreducible polynomial in F having a as root divides
both f and f'. Conversely, any root of a factor common
to both £ and ' 1s a root of £ and £,

Corollary. If F 1s a field of characteristic O then
each irreducible polynomial in F is separable.

Suppose to the contrary that the irreducible poly-
nomial f(x) has a root a of multiplicity greater than 1.
Then, f£'(x) is a polynomial which is not identically
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ing coefficient of f£(x) and is not zero since the char-
acteristic 1s 0) and of degree 1 less than the degree
of £f(x). But a is also a root of £'(x) which contra-

dicts the irreducibility of f(x).

I. Roots of Unity.

If F is a flield having characteristic p, and E the
splitting fleld of the polynomial x? - 1 where p does not
divide n, then we shall refer to E as the fileld generated out

th root of unity.

of F the adjunction of a primitive n
The polynomial x® - 1 does not have repeated roots in
E, since 1ts derivative, nxn"l, has only the root 0 and has,
therefore, no roots in common with x® = 1. Thus, E is a nor-
mal extension of F. If e;,€5,e:.,€, are the roots of x? - 1
in B, they form a group under multiplication and by Theorem 17
this group will be cyclic. If 1,¢,e2,...,e2"1 are the elements
of the group, we shall call ¢ a primitive nt? root of unity.
The smallest power of & which 1s 1 is the nth,

THEOREM 19, If E is the field generated from F by a

primitive nth root of unity, then the group G of E over F i:

abelian for any n and cyclic if n is a prime number.

We have E = F(e), since the roots of xP - 1 are
powers of e, Thus, if ¢ and T are distinct elements
of G, o(e) # t(e). But o(e) 1s a root of xR - 1
and, hence, a power of €. Thus, o(e) = e?® where

ng is an integer 1 = ng < n. Moreover,
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to(e) = t(eP9) = (¢(e))0 = ¢PT 70 a gr(e). Thus,
Ny E Nghy mod n. Thus, the mapping of ¢ on n,; is a
homomorphism of G into a mxlti_pnentivo subgroup of the
integers mod n. Since T ¥ o implies < (e) ¥ o(e),
it follows that T ¥ ¢ implies n; ¥ n; mod n. Hence,
the homomorphism is an isomorphism. If n is a prime
number, the multiplicative group of numbers forms a cyc-
lic group.

Je Ro'ether Equations,
If E is a field, and G = (0,T,...) & group of auto-

morphisms of E, any set of elements Xy sXyp sees In E will be

<

sald to provide a solution to Noether's equations 1if
P o(xy) = x,, for each 0 and ¥ in G. If one element

Xy = 0 then x, = O for each T ¢ G. As T traces G, ot assumes
all values in G, and in the above equation xyy = O when x5, = O.
Thus, in any solution of the Noether equations no element
x,= 0 unless the solution is completely trivial. We shall as-
sume in the sequel that the trivial solution has been
excluded.

THEOREM 20. The system xg5,X¢, .. 18 8 solution to

Noether's equations 1f and only 1f there exists an element a in
E, such that xg = gc (c] for each 0 .

For any a, it 1s clear that x; = a/o(a) 1s a solu-
tion to the equations, since
a/o(a)e o(a/t(a)) = a/c(a)e o(a)/ov(a) = afot(a).
Conversely, let x;,X¢,... be a non-trivial solution.
8ince the automorphisms ¢, T ,... are distinct they are
linearly independent, and the equation
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xg+0(z) + x;T(2)+... = 0 does not hold identically.
Hence, there 1s an element a in E such that
xz0(a) + x;t(a) + ... =a # 0. Applying o to a gives

o(a) = 2 oflx,)eot(a).
Teqd

Multiplying by Xg gives
x °o(a) =T§Gx°c(x¢)'ﬂ(a).

Replacing x,°0(x.) by Xgy and noting that ot assumes
all values in G when t does, we have

xg°0(a) '-:EGX"T(&) =a

so that
x, = a/o(a).

A solution to the Noether equations defines a mapping C
of G into E, namely C(o) = x,. If F is the fixed field of
G, and the elements x; lle in F, then C is a character of G.
For C(ot) = xg. = x;°0(xg) = x5x¢ = C(0)+C(t) since
o(xg) = xy 1f x.eF. Conversely, each character C of G in F
provides a solution to the Noether equations. (Call C(c) = x;.
Then, since x eF, we have o(x,) = Xy Thus,
xge0(xg) = x5°xg = C(a)C(7) = C(0%) = x5y . We therefore
have, by combining this with Theorem 19,

THEOREM 21, If G 1s the group of the normal field E

over F, then for each character C of G into F there exists an

element ¢ in E such that C(c) = a/c(a) and, conversely, if

a/o(a) is in F for each ¢ , then C(c) = a/o(a) is a character

of Go If r is the least common multiple of the orders of

elements of G, then aFeF.

We have already shown all but the last sentence of

Theorem 21. To prove this we need only show g(af) = aT
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for each oe@. But a¥/o (a¥) = (a/0(a))” = (¢ (o))T
= ¢c(o¥) = ¢c(1) =1.

K. Kummer's Filelds.

If F contains a primitive nth

ting field E of a polynomial (x° - 11)(:!n - '2) cee (xP - a,)

root of unity, any split-

where aseF for 1 = 1,2,...,r will be called a Kummer exten-
sion of F, or more briefly, a Kummer field.

If a field F contains a primitive n®® root of unity, the
number n is not divisible by the characteristic of F. Suppose,
to the contrary, F has characteristic p and n = qp. Then
yP = 1 = (y - 1)P since in the expansion of (¥ - 1)P each co-
efficient other than the first and last is divisible by p and
therefore is a multiple of the p-fold of the unit of P and
thus 1s equal to O. Therefore x* - 1 = (x9)P? . 1 = (x9 . 1)P
and x® - 1 cannot have more than q distinct roots. But we as-
sumed that F has a primitive n®® root of unity and
1,¢,¢2,...,¢"1 would be n distinct roots of x? - 1. It fol-
lows that n 1s not divisible by the characteristic of F. For
a Kumer field E, none of the factors xB - '1’ 8, # O has
repeated roots since the derivative, nx®~l, has only the root
0 and has therefore no roots in common with x" - a,. There-
fore, the irreducible factors of = - a, are separable, so that
E is a normal extension of P.

Let ay be a root of x - ay in E. If cl,ca,...,en are
the n distinet n®® roots of unity in F, then
@y€,,848p,000,84¢, will be n distinct roots of 2 . ay, and
hence will be the roots of x° - a;, so that !-P(ul,aa,...', "‘r)'
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Let o and T be two automorphisms in the group G of E over .

For each a;, both ¢ and T map a, on some other root of

1
x" - ag. Thus, *(a,) = ¢, a, and a(ai) = ¢, G, where

e,, md e, are n'® roots of unity in the basic field P. It

1o
follows that =( c(ai)) = ('10"1) = euz(ai) = e45847%1
= o(~ (“1)’ Since ¢ and T are commutative over the generat-
ors of E, they commute over each element of E. Hence, G 1s
commutative. ?::1 oe@, then o (ci) - ‘jg“j,"’z(“i’ = euzai R
etc. Thus, o "(a,) = a, for n, such that e“ni = ], B8ince
the order of an att root of unity 1is a divisor of n, we have
n, a divisor of n and the least common multiple m of
Ny,Rg,eee, B, 18 & dlvisor of n. Since o™(ay) = a; for
1 =1,2,i00,r 1t follows that m 1s the order of o . Hence,
the order of each element of G is a divisor of n and, there-
fore, the least common multiple r of the orders of the elem-
ents of G 1s a divisor of n. If ¢ is a primitive n"h root of
unity, then en/’ is a primitive r®® root of unity. These re-
marks can be summarized in the followlng

THEOREM 22. If E 1s a Kummer <fleld, 1l.e., a nplittlng_
field of p(x) = (x% - a;)(a" - ag)...(x" - a;), where a, lie
in F, and F contalns a primitive n®® root of unity, then: (a)

E 1s a normal extension of F, (b) the group G of E over F is

abelian, (c) the least common multiple of the orders of the

elements of G is a divisor of n.

Corollary: If E is the splitting field of xP - a, and
P contains a primitive p"h root of unity where p is a
prime number, then either E = P and xP - a 1s split in
F, or xP - a 1s irreducible and the group of E over F
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. 18 cyclic of order p.

The ,order of each element of G is, by Theorem 22, a
divisor of p md, hence, if the element is not the umit
its order must be p. If a 1s a root of xP - g, then
@,¢a,...,¢6P"1a are all the roots of xP - a so that
l;(c) = E and (E/F) < p. Hence, the order of G does not
exceed p s0 that if G has one element different from the
unit, it and its powers must constitute all of G. Since
G has p distinct elements and their behavior is deter-
mined by their effect on a, then a must have p distinct
images. Hence, the irreducible equation in P for a must
be of degree p and is therefore xP - a = 0,

The properties (a), (b) and (¢) in Theorem 22 actu-

8lly characterize Kummer flelds.

Let us suppose that E is a normal extension of a

field F, whose group G over F is abellan. Let us further
assume that if the least common mltiplQ of the orders of

elements of G is r, then F contains a primitive rth root of

unity.

The group of characters X of G into the group of rtb
roots of unity is isomorphic to G. Moreover, to each ceG,
1f o0 ¥ 1, there exists a character CeX such that C(c) ¥ 1.

Let A denote the set of those non-zero elements a of
B for which a¥e¢F and let Fl denote the non-zero elements of
F. It is obvious that A is a multiplicative group and that
Py is a subgroup of A. Let AT denote the set of r¥® powers

of elements in A and 1'1’ the set of rtP powers of elements
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of Fl. The following theorem provides in most applications

a convenient method for computing the group G.
THEOREM 23. The factor _groups (A/l"l) and (Ar/l"{) are
isomorphic to each other and to the groups G and X.
We map A on A’ by making aeA correspond to a"u". Ir
a¥ cl"i', where aeF, then beA 1s mapped on af if and only if
bT = oF, that is, 1f b 1s a solution to the equation

x* - aT = 0. But a,¢s,e%a,...,e7"1a are aistinct solu-
tions to this equation and since ¢ and a belong to Fl.
it follows that b must be one of these elements and must
belong to !{1. Thus, the inverse set in A of the sub-
group F{ of AT 1s F,, so that the factor groups “/Pl)
and (Ar/l'{) are isomorphic.

If @ 1s an element of A, then (a/o (a))™= a¥/o(a¥)=1.
Hence, a/o (a) is an r*! root of unity and 1lies in Fy. By
Theorem 21, a/ o (a) defines a character C(c) of G in P.
We map a on the corresponding character C. Each char-
acter C 1is by Theorem 21, image of some a. Moreover,
aea' is mapped on the character c’tc) = qgeg!/c (aeq?) =
aa'/c(a)ec(a?) = C(o)e C'(o) = Ce+C'o), so that
the mapping is a homomorphism. The kermel of this homo-
morphism is the set of those elements & for which
a/o(a) = 1 for each ¢ , hence is F). It follows, there-
fore, that (A/F;) 1s isomorphic to X and hence also to
@. In particular, (wl) is a finite group.

We now prove the equivalence between Kummer fields
and fields satisfying (a), (b) snd (¢) of Theorem 22.
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THEOREM 24. If E 1s an extension field over F, then E
1s & Kummer field if and only if E is normal, its group @ 1s
abelian and F contains a primitive r*® root ¢ of unity where r
is the least common multiple of the orders of the elements of G.

The necessity 1s already contained in Theorem 22. We
prove the sufficiency. Out of the group A, let
“1’1’“2’1""’%’1"' the cosets of 1"1. 8ince aieA, we
have u{ = a,eP . Thus, a, 1s a Toot of the equation
L - ay = O and since eai,caai,...,cr‘lti are also roots,
xT - a, must split in E. We prove that E is the split-
ting field of (xT - al)(x" - az)...(x" - a.) which will
complete the proof of the Theorem. To this end it suf-
fices to show that P(cl,az,....at) = B,

Suppose that "ﬁ:“goﬂ'oug) ¥ E. Then F(al""’“t)
is an intermediate field between F and E, and since B is
normal over 1'(“1'“"“1:) there exists an automorphism

ceG, o ¥ 1,which leaves F(aj,...,ay) fixed. There exists
a character C of G for which C(0) ¥ 1. Finally, there
exists an element a in E such that 0©(c) = g/c(a) ¥ 1.
But c’c!‘l by Theorem 21, hence aeA. MNoreover,

A € P(a),e0,a,) since all the cosets asF) are contained
in !'(cl,....ct). Since r(cl....,at) is by assumption
left fixed by ¢, o (a) = a which contradicts a/c (a)¥1.
It follows, therefore, that P(cl,....ct) =R,

Qorollary: If E 1s a normal extension of F, of prime
order p, and if F contains a primitive gth root of unity,

then E is splitting field of an irreducible polynomial
xp - 8 in Fo
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L.

E 1s generated by elements a ,...,an where ag e P,

Let @, be not in F. Then xP - : is irreducible, for

otherwise F(al) would be an intermediate field between F
and E of degree less than p, and by the produet theorem
for the degrees, p would not be a prime number, contrary

to assumption. E = 1"(31) is the splitting field of xP -a.

Simple Extensions.
We consider the question of determining under what condi-

tions an extension field is generated by a single element,
called a primitive. We prove the following

THEOREM 25. A finite extension E of F 1s primitive over

F if and only if there are only a finite number of intermediate

fields.

(a) Let B = F(a) and call f£(x) = O the irreducible
equation for a in F. Let B be an intermediate field
and g(x) the irreducible equation for a in B . The
coefficients of g(x) adjoined to F will generate a field
B! between F and B. g(x) 1is irreducible in B ,
hence also in B!, Since E = B!'(a) we see (E/B)=(K/B*)
This proves B' = B, So B 1s uniquely determined by
the polynomial g(x). But g(x) is a divisor of f(x),
and there are only a finite number of possible divisors
of £(x) in E. Hence there are only a finite number of
possible B's,

(b) Assume there are only a finite number of filelds
between E and F. Should F consist only of a finite mumber
of elements, then E 1s generated by one element according

to the Corollary on page 4l. We may therefore assume F to
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contain an infinity of elements. We prove: To any two
elements a,f there is a y in E such that F(a,8) = F(7).
Let y = qg + af with a in F but for the moment undetermined.
Consider all the fields F(y) obtained in this way. Since
we have an infinity of a's at our disposal, we can find
two, say ay and 8o, such that the corresponding y's,
7, =a+ ulp and YTp=a+ azp, Yield the same field
F(rl) = F(yz). 8ince both 7, and 7, are in r(yl), their
difference (and therefore f) is in this field. Con-
sequently also 7, - a;f = &. 8o P(a,B) € F(yy). 8ince
F(yy) € F(a,p) our contention is proved. Select now n
in E in such a way that (F(1)/F) is as large as possible.
Every element ¢ of E must be in F(n) or else we could
f£ind an element & such that F(8) contains both 71 and e.
This proves E = F(nq).
THEOREM 26, IfT E = F(al,ag,...,a.n) is a finite extension
of the field F, and @585 0005 &y ATO separable elements in E,
then there exists a primitive @ in E such that E = F(9).

Proof: Let fy(x) be the irreducible equation of
@y in P and let B be an extension of E that splits
£3(x)fo(x)eecfy(x)e Then B 1is normal over F and con-
tains, therefore, only a finite number of intermediate
fields (as many as there are subgroups of G). So the sub-
fleld E contains only a& finite number of intermediate
flelds. Theorem 25 now completes the proof.

M. Existence of a Normal Basis.

The following theorem is true for any field though we

prove it only in the case that F contains an infinity of elements
THEOREM 27, If E 1s a normal extension of F and 03,05,...,0,

are the elements of its group G, there is an element
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@ in E such that the n elements 01(0), 02(9), eee; 0,(0) are

linearly independent with respect to F.
According to Theorem 26 there is an a such that

E = F(a). Let f(x) be the equation for a, put o,(a)=a,,
g(x) x-a ay] ad g,(x) o, (g(x)) m‘iﬁp-

gi(x) is a polynomial in E having @, &8 root for k A1
and hence

(1) g,(x) g, (x) = 0 (mod £(x)) fori Fk.

In the equation

(2) gl(x) tgz(x) L I -o-gn(x) -1=0

the left side 1is of degree at most n - 1. If (2) is true
for n different values of x, the left side must be iden-
tically O. Such n values are @y rgpeeely since
gy(a,) =1 ana g, (a,) = 0 fork # 1.

Multiplying (2) by 31(3) and using (1) shows:
(3) ( gy(x))2 = gy(x) (moa £(x)).

We next compute the determinant
(4) D(x) = |oy0,(g(x))] 4,x=1,2,...,n
and prove D(x)y¥ 0. If we square it by multiplying column
by column and compute its value (mod f(x)) we get from
(1), (2), (3) a determinant that has 1 in the dlagonal
and O elsewhere. So

(D(x))% =1 (moa £(x)).

D(x) can have only a finite number of roots in F.
Avoliding them we can find a value a for x such that
D(a) # 0. Now set @ = g(a). Then the determinant
(65) '°1°k(°)' #o.
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Consider any linear relation
xlcl(o) + "2"2(9’ + «eo + x.0,(0) = 0 where the x, are in
F. Applying the automorphism o; to it would lead to n
homogeneous equations for the n unknowns X5 (5) shows

that x; = O and our theorem is proved.

N. Theorem of Natural Rationality.
Let F be a field, p(x) a polynomial in F whose irredu-

cible factors are separable, and let E be a splitting field for
p(x). Let B be an arbitrary extension of F, and let us denote
by EB the splitting field of p(x) when p(x) is taken to lie

in B, If Gyse00,Qy BT the roots of p(x) in EB, then

s
F(al....,a’) is a subfield of EB which 1s readily seen to
form a splitting field for p(x) in F. By Theorem 10, E and
F(al""’“s) are isomorphic. There is therefore no loss of
generality if in the sequel we take E = F(al,...,ns) and assume
therefore that E 1s a subfield of EB. Also EB = B(ajs.ss,agh

Let us denote by EA B the intersection of E and B .
It is readily seen that ENB 1s a fileld and 1s intermediate
to F and E.

THEOREM 28. If @ 1s the group of automorphisms of E
over F, and H the of EB over then H 1s 1somorphic to
the subgroup of G hav EnB_as 1ts fixed fleld.

Each automorphism of EB over B simply permutes
@35,¢eeyQq in some fashion and leaves B , and hence also F,
fixed., Since the elements of EB are quotients of
polynomial expressions in Gyresery with coefficients in
B, the automorphism is completely determined by the

permutation it effects on Qqseee,Cge Thus, each



automorphism of EB over B defines an automorphism of
E= F(al,...,a‘) which leaves F fixed. Distinct automor-
phisms, since a;,...,a, belong to E, have different ef-
fects on E. Thus, the group H of EB over B can be cone
sidered as a subgroup of the group G of E over F. Each
element of H leaves En B fixed since it leaves even all
of B fixed. However, any element of E which is not in
EnB 1s not in B , and hence would be moved by at least
one automorphism of Ho It follows that EA B 1is the
fixed fleld of H.

Corollarys: If, under the conditions of Theorem 28, the

group G is of prime order, then either H = @ or H con-
sists of the unit element alone.

Remark. The inductions in the proofs of Theorems 10
and 15 may be based on the number n of roots of the polynomial
which are in the extension but not in the given field. This
relieves the proofs of their dependence on Theorem 6, and also
simplifies them.



