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Introduction.

We give an exposition of several results on definable groups in differentially
closed fields, and applications thereof. Among other things we give a proof of
the result [HS] that there are continuum many countable differentially closed
fields of characteristic 0. The theory DCF, (of differentially closed fields of
characteristic 0) is complete and w-stable and thus by [SHM] has either < o
or 2% countable models. But until recently it was not known which. Rather
surprisingly it turns out that classical mathematical objects, specifically elliptic
curves, lie behind the existence of continuum many countable models (or at
least behind the present proof). One of the essential points is to find some
strongly regular nonisolated type which is orthogonal to the empty set. The
required type p is found inside a suitable definable (in DCFy) subgroup G (of
finite Morley rank) of an elliptic curve E(a) with differentially transcendental
J-invariant a. So it turns out that there are “exotic” groups of finite Morley rank
definable in differentially closed fields. In any case in section 2 of this paper we
prove the existence of 2% countable differentially closed fields. The argument we
present was sketched for us by E. Hrushovski, although we have a few additional
simplifications. In fact, given an example due to Manin [M], showing that for
any elliptic curve E there is differential rational homomorphism from E onto
G, (the additive group), the existence of the required type p turns out to rather
a direct matter, requiring neither the deep Zariski-geometry interpretation, nor
the properties of ”jet groups” of algebraic groups.

On the other hand, in so far as simple (noncommutative) groups of finite
Morley rank are concerned, no exotic structures are to be found in differentially
closed fields. Any such group G will be definably isomorphic to an algebraic
group living in the constants. This is exactly the finite Morley rank case of Cas-
sidy’s Theorem [C2], of which I will give an easy proof in section 1. This implies
that any infinite field F' of finite Morley rank definable in a differentially closed
field K is definably isomorphic to the field of constants of K. The remaining
part (namely the infinite Morley rank case) of Cassidy’s Theorem, states that a
simple group of infinite Morley rank definable in a differentially closed field K
is definably isomorphic to an algebraic group over K. We were unable to find
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a “naive” proof of this (as in the finite Morley rank case), but in section 5 we
outline a fast proof due to Buium. In sections 3 and 4 we present the machin-
ery and properties of “jet” groups of algebraic groups. This is due to Buium
[B1] and [B2], who worked scheme-theoretically. Following Buium, we recover
Manin’s results [M] concerning the existence of differential rational homomor-
phisms from arbitrary abelian varieties into vector groups. Following [HS] we
point out how this, together with the “Zariski-geometry” interpretation, yields
the classification, up to nonorthogonality, of nontrivial Morley rank 1 types in
DCFy.

For the remainder of this paper U = (U, +, -, 6) will denote a big saturated
differentially closed field of characteristic 0. C denotes the field of constants
of U. All objects we talk about will be ones definable in U. RU will denote
Lascar’s “U-rank”. Morley rank ( RM ), RU etc., will always mean in the sense
of (U,+,-,6), unless stated otherwise. We usually write z’ in place of §(z) The
reader is referred to Marker’s paper [Mr] in this volume for various basic facts
about differentially closed fields. But I remark here that the field of constants C
with all the definable structure induced from U is simply an algebraically closed
field (C,+,-). For the purposes of this paper a differential algebraic group is
simply a group definable in a differentially closed field. (The equivalence of the
categories of differential algebraic groups and definable groups is pointed out in
[P1]. However to obtain an equivalence which preserves “fields of definition” is
rather more tricky, and appears in [P2].) By a minimal group we usually mean
a definable commutative group without proper definable connected subgroups
(where “definable” means in U or in the field structure of U, depending on the
context).

I will be using facts from stability theory and stable group theory quite
freely. (See [Po].) Among other things, I may be using facts such as : an infinitely
definable group in an w-stable structure is definable; an infinite definable group
in an w-stable structure has an infinite definable commutative subgroup. I also
use fairly freely the fact that any group definable in an algebraically closed field
(K,+, ) is definably isomorphic to G(K) for G some algebraic group defined over
K, and also that an infinite field definable in (K, +, -) is definably isomorphic to
K. We also make use in various places of the following theorems about abstract
algebraic groups and abelian varieties (see for example [Sh] and [L]):

(a) If G is a connected algebraic group defined over a field k, then G has
a unique maximal normal linear algebraic subgroup N, and G/N is an abelian
variety.

(b) if A is an abelian variety then the torsion part of A is infinite, and for
any n, the n-torsion of A is finite.

(c) if A is an abelian variety defined over k, then any algebraic subgroup
(connected or not) of A is defined over acl(k).

At some points (as in (a), (b), (c) above for example) we will be interested in
objects defined in U just in the field language. We will thus denote the structure
(U,+,-) by U~., and we talk about “definable in U~”. Similarly tp~(a/k) is
the complete type of a over k in the structure U™, and RM~(a/k) is the Morley
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rank of tp~(a/k) in the structure U~. For notions from stability (including
the “geometric” theory), I would recommend [P3]. Simply for basic stability I
recommend [Las]. I thank E. Hrushovski for several communications, and also
D. Marker for some helpful discussions.

§1 Simple groups of finite Morley-rank.

The key point in getting a handle on simple definable groups (of finite
Morley dimension or not) is to embed them definably in some GL(n,U). In
fact any group definable in U can be embedded in an algebraic group over U,
namely into a a group definable in U~ (this is proved in [P2]). For groups of
finite Morley rank the proof is a little easier and we give it now.

Lemma 1.1. Let G be a connected group of finite Morley rank definable in
U. Then G is definably embeddable into some definable group H where H is
definable in U~ and connected (as a group definable in U~).

Proof.

Let k be a countable model (elementary substructure of U, or equivalently
differentially closed differential subfield of U) over which G is defined. Let a be
a generic point of G over k. As RM(a/k) is finite so is tr.degree k(a)/k. Thus
there is some tuple a from k(a) such that k(a) = k(a). Write @ = f(a) where
f(z) is some k-definable function defined at a. Choose b € G generic over k(a).
So k(b) = k(f(b)). Then a - b is generic in G over each of k(a), k(b). Moreover
a-b € (k(a))(b) = (k(f(a))(f(b)). So f(a.b) € k(f(a), f(b)). Let p(z) = tp~(a/k)
(= tp=(f(b)/k) = tp~(f(a.b)/k)). Then easily f(a) and f(b) are independent
realisations of p in U~. Similarly for f(a) and f(a -b), f(b) and f(a -b). Let
g(z,y) be a function k-definable in U~ such that f(a.b) = g(f(a), f(b)). Clearly
then g is (in U™) a generically associative k-definable function from p x p to
p. By a result of Hrushovski [Po, 5.23] (or even Weil’s theorem) there is some
connected group H definable over k in U~ such that p(z) is the generic type of
H. The map f which takes generic a of G to f(a) € H can be easily seen to
extend to a definable embedding of G into H.

Corollary 1.2. Let G be a centreless connected group of finite Morley rank
definable in U. Then there is a definable embedding of G into GL(n,U) for
some n.

Proof.

Let H be a group definable in U~ such that G is definably embedded in
H. H can be identified (definably) with an algebraic group over U. H may be
assumed to be connected. Choose H of least dimension (or equivalently least
Morley rank in U~). Then Z(H), the centre of H, has trivial intersection with G,



117

so G embeds definably in H/Z(H) (another connected group definable in U™).
Thus Z(H) is finite (otherwise dim(H/Z(H)) < dim(H)). But then H/Z(H) is
centreless. Thus we have definably embedded G into a centreless algebraic group
which we call H again. But it is well known [B] that any centreless algebraic
group embeds (as an algebraic group, so definably in U~) in GL(n,U) (some
n). This completes the proof.

We need to know some elementary facts about definable subgroups of U™
and (U*)".

Fact 1.3. Let G be a definable (in U) subgroup of U”. Then G is a vector
space over C. If moreover G has finite Morley rank, then G is a finite-dimensional
vector space over C.

Proof. The set A = {a € C : aG C G} is a definable (in U) additive subgroup
of C which is infinite (as it contains Z). Thus (as C is strongly minimal in
U), A = C. The last remark is clear, for if the C-dimension of G is > m then
RM(G) > m (since C-dimension(G) = RM(Q) if the latter is finite).

Fact 1.4. The map which sends (z;,...,25) to Z s ﬁfz_v;L') defines a homo-

morphism from (U*)" onto U™ with kernel (C")".zl
Proof.

The fact that the map is a homomorphism with kernel as stated is checked
immediately. Surjectivity follows for example by comparing RU-ranks (as U is
differentially closed, so w-stable).

Theorem 1.5. Let G be a simple group of finite Morley rank definable in U.
Then there is a group H definable in the structure (C,+, ) such that G is (in
U) definably isomorphic to H. Otherwise stated; there is an algebraic group H
defined over C such that G is definably isomorphic to H(C).

Proof.

By Corollary 1.2, we may assume G is a definable subgroup of GL(n,U)
for some n. Now G, as an w-stable group, has an infinite commutative definable
subgroup A. We use some elementary facts on linear algebraic groups, for which
the reader is referred to [Bo]. By the Lie-Kolchin Theorem, we may assume that
A is a group of upper triangular matrices. Let p be the homomorphism from A
into the group D of diagonal n x n matrices (namely p is simply projection on
the diagonal). p is clearly definable.

Case (i). Ker(p) is nontrivial.
Let B = Ker(p). B is then a commutative group of unipotent matrices,
and is known to be isomorphic by the map

E-D L XD

log(X =)(X — I) - “— —
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to a subgroup, say Bj, of the additive group of n x n matrices over U. Then
B, is definable and of finite Morley rank. By Fact 1.3 Bl is a finite dimensional
vector space over C. In particular B; and thus also B, are connected. As G is
simple and of finite Morley rank, by Zilber’s indecomposability theorem, there
are g(1),..,9(k) in G such that G = B - Bg(1)---Bg(k). Thus G is definably
isomorphic to a group H C C™/E (where E is some definable equivalence rela-
tion). But any definable (in U) relation on C™ is definable in(C,+,-). Thus G
can be identified with a group definable in (C,+, -), as required.

Case (ii). Ker(p) is trivial.

Thus p yields an isomorphism of A with a subgroup D; of (U*)*. If D1 N
(C*)™ is infinite, then an application of Zilber’s indecomposability theorem as in
Case (1) again yields the desired conclusion. Otherwise let m be the cardinality
of Dy N(C*)". Then clearly mD; N(C*)* = 1. Let Dy = mD;. So by Fact 1.4,
D, is definably isomorphic to a (infinite) subgroup of U™, which must have finite
Morley rank and is again a finite-dimensional vector space over C. Proceed as
in Case (i). This completes the proof.

Corollary 1.6. If F' is an infinite field definable in U and F' has finite Morley
rank, then F is definably isomorphic to the field C of constants of U.

Proof.

It is known that F' must be algebraically closed. PSLy(F) is then a simple
group of finite Morley rank definable in U, so by 1.5, is definably isomorphic to a
group H definable in C. Now F is definably isomorphic to a field definable in the
pure group structure of PSLy(F) (by considering a Borel subgroup). Thus F is
definably isomorphic to a field K living in C. Then K is definable in (C,+,-)
so is (by [Po]) definably isomorphic to the field C. The result follows.

Remarks 1.7. (i) We were a little heavy handed in the proof of 1.5. From Facts
1.3, 1.4, simplicity of G and the facts used about commutative linear groups,
one sees directly that G is nonorthogonal to C, thus internal to C.

(it) Cassidy points out in [C1] that if G is any connected definable subgroup
of (U*)™ and G is the Zariski closure of G then G; N (C*)® = GN (C*)". One
can deduce from this that if such a group G has RU-rank wm for some m > 0,
then G is algebraic.

(iii) Proving that any definable simple group G of infinite Morley rank is
definably isomorphic to an algebraic group over U, is a rather more subtle issue.
One can assume that G is Zariski dense in a simple algebraic group. But the
kind of arguments used in the finite Morley rank case do not work, as U is not a
“pure field”. Cassidy’s proof in [C2] involves detailed facts about root systems
in Chevalley groups. Buium [B2] has a direct and conceptual proof using the
“jet groups” which appear in the next sections, together with the fact that a
simple algebraic group acts irreducibly on its Lie algebra. We sketch his proof in
section 6. It would be nevertheless nice to find a more model-theoretic proof, for
example by finding a “large” definable diagonalisable subgroup of G, and then
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using (ii) and the indecomposability theorem. On the other hand it is not true
that any simple differential algebraic subgroup of GL(n,U) of infinite Morley
rank is already algebraic (namely definable in U~).

For example let G = {(X, X/) : X € SL(n, U)} with multiplication (X, X")-
(Y,Y") = (XY,(XY)'). G can be represented as a definable subgroup of GL(2n, U),
with X in the top left hand corner and bottom right hand corner, and X’ in the
top right hand corner.

§2. Elliptic curves and many countable models

2. Elliptic curves and many countable models.

The aim here is to give as painless a proof as possible of the existence of
continuum many countable differentially closed fields. We will give such a proof,
modulo a result of Manin (Lemma 2.3 below). In fact Manin’s result is essen-
tially just an example in the introduction to [M]. There are several definitions
of “elliptic curve”. For example : a connected one-dimensional algebraic group
which is complete as an algebraic variety, a nonsingular projective algebraic
curve of genus one with a distinguished point, or even a nonsingular projective
cubic curve with a distinguished point. Among the important things for us is
that the family of such objects has an infinite moduli space. In any case an el-
liptic curve is a certain kind of algebraic group, and as such is an object defined
in U~. (We view U~ as a universal domain for algebraic geometry. If you wish
identify U~ with C, the complex field.) More generally an abelian variety is a
connected (infinite) algebraic group whose underlying variety is complete (see
[Sh]). An abelian variety is said to be simple if it has no proper abelian sub-
varieties. An elliptic curve is then just a one-dimensional abelian variety. The
following fundamental information can be found in any basic text on elliptic
curves, e.g [Si].

Fact 2.1. To each elliptic curve E can be associated an element j(E) € U, with
the following properties.

(1) j(E) is in any field of definition of E (in the algebraic sense).

(ii) E is isomorphic to Ey iff j(E) = j(E:) (Here isomorphic means as
algebraic groups).

(iii) for any j, there is an elliptic curve E such that j(E) = j and E is
defined over j.

Example 2.2. Let a,b € U satisfy 4a® + 27b% # 0. Then the solutions of the
equation y? = z3 4 a® + b together with the point at infinity form an elliptic
curve (whose 0 is the point at infinity, and with the “chord-tangent” group law).
The j-invariant of this curve is traditionally given as (123)(4a®/4a® + 27b%).
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Any elliptic curve is isomorphic to one of the above form. Given j # 0, 123,
the following cubic defines an elliptic curve with invariant j: y? = 423 —27(j/j —
123)z — 27(j /5 — 123).

The following appears essentially in the introduction to [M].

Lemma 2.3. Let E be an elliptic curve. Then there is a definable (in U)
nontrivial homomorphism from E into (U, +).

Let us quickly remark that if X is a set definable in U~, then the Morley
rank (or U-rank) of X in U, is simply wd, where d = RM~(X). In particular,
an elliptic curve has RU-rank w, as an object definable in U.

Corollary 2.4. Let E be an elliptic curve defined (in U~) over k. Then there
is a subgroup G of E, definable in U such that

(i) G has finite Morley rank,

(ii) G is infinite, connected and k-definable, and has no proper infinite k-
definable subgroup.

Proof.

Let f : E — U be the homomorphism given by lemma 2.3. Now in U, F has
U-rank w (and is still connected). Thus ker(f) is a proper definable subgroup
of E, hence has finite RU-rank (equivalently finite Morley rank). As (U,+) is
torsion-free it follows that ker(f) contains Tor(E) (the torsion part of E). Note
that Tor(F) is infinite. Let B be the intersection of all definable subgroups of £
which contain Tor(E). Then B is k-definable, infinite, connected, and of finite
Morley rank. Now choose G to be a k-definable infinite connected subgroup of
B which has no proper infinite k-definable infinite subgroup.

The main point is to show that for suitable elliptic curves E, any group G
as given by 2.4 has generic type orthogonal to §.

Theorem 2.5. Suppose a € U is differentially transcendental. Let E(a) be an
elliptic curve defined over a (in U~) and with j(E(a)) = a. Let G be a subgroup
of E(a) of finite Morley rank, which is connected, infinite, defined over a (in U),
and has no proper infinite definable subgroup also defined over a. Let p(z) be
the generic type of G. Then p(z) is orthogonal to 0.

Proof.

Let us write p(z) as p(z,a). Basic facts about orthogonality mean that we
have to prove:

Restatement: if b € U, tp(b/d) = tp(a/0) and b is independent from a over
0, then p(z, a) is orthogonal to p(z,b).

Aiming for a contradiction, we assume this fails. Thus we have b as in the
hypothesis of the restatement, but with p(z,a) nonorthogonal to p(z, b).
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Step I. We find a connected group H defined over some parameter ¢ with ¢
independent from a over @, and a definable isomorphism A between H and G.

Note p(z, a) is the generic type of G. By assumption p(z, a) is nonorthogonal
to p(z,b). Let G(b) denote the “copy” of G over b. Let {bp,b;,...} be a set of
realisations of ¢tp(a/d) such that {a, by, b1, ...} is @-independent.

Claim Ja. There is a “small set” A of parameters, there is a proper a-definable
subgroup N of G, and there is n < w such that G/N Cdcl(AUG(bo)U. . .UG(b,)).

Proof.

This is really a basic stable-group-theoretic result due essentially to
Hrushovski. However, I do not know a reference for the specific form in which the
claim is stated, so I sketch the proof. The nonorthogonality assumption means
that there is a model M containing {a,b}, and there are elements c realising
p(z,a)|M and d realising p(z, b)|M such that c forks with d over M. Let e be the
canonical base of tp(d, M/c,a). Then e € dcl(c, a)N dcl(d, M, dy, M1, ..,dn, M)
(for some n) where (do, Mp) = (d, M) and (d;, M;) is an {a,c}-independent se-
quence of realisations of tp(d, M /c,a). Let b; € M; be the copy of b. Then clearly
{a,bo,...,bs} is an independent set of realisations of tp(a/d) so we may assume
that the b; are the same as the ones mentioned before the claim. Also note that
c (as well as e) is independent from My U ... U M, over a. Let G; = G(b).
Note that d; € G(b;). Write e = f(c) for some a-definable function f. Let N
be {g € G : for ¢; realising p(z,a)|{a,g}, f(g-c1) = f(c1)}. Then (as e €
acl(a)) one can show that N is a proper a-definable subgroup of G. Let X be
a big Morley sequence inp(z,a)|(Mo U...U M,). Then one can show that for
¢; realising p(z,a)|(Mp U ...UM, UX), ¢;/N € del({a} U X U {f(c1 - ¢2) :
¢z € X}). But (for such ¢;) for all c; € X, by automorphism, f(c; - c3) €
del(Mo U ...UM, U {ho,...,h,}) for some h; € G(b;). Thus, choosing A to be
XUMyU...UMy,U {a}, we see that ¢;/N €dcl(AUG(bo) U ...UG(by)). As
every element of G/N is a product of such generic elements c; /N, it follows that
G/N € dcl(AUG(bo) U...UG(bs)), so proving the claim.

Let Y denote the {by, .., b, }-definable set G(bo) U...U G(b,). By the claim
(and compactness), there is some A-definable set of tuples from Y, and some A-
definable equivalence relation E on X, such that G/N is in A-definable bijection
with X/E. By stability, there is some tuple c of parameters from Y U {bo, .., b, }
such that X, E and also the induced group operation on X/E are all definable
with parameter c. Let H be the resulting c-definable group, and let A be the
A-definable isomorphism between H and G/N.

Claim Ib. c is independent from a over 0.

Proof. By choice, {bo, .. .,bn} is independent from a over @, and as c is contained
inY =G(b)U...UG(b,), tp(c/bo, .., by) has finite RU-rank. As tp(a/bo, ..,bn)
has RU-rank w, ¢ must be independfent from a over {bg, ..,b,}. Thus c is inde-
pendent from a over 0.

Now by choice of G and the fact that N is a-definable, N must be finite.
At this point we could replace G by G/N and E by E/N. Alternatively, let h;



122

be the map from H into G defined by hi(y) = 3. h~!(y). Using the fact that
both G and H are divisible, with finite n-torsion for all n, it is clear that h; is
a surjective definable homomorphism with finite kernel N;. Now N; must be
acl(c)-definable (by the torsion condition on H). Thus h; induces a definable
isomorphism between H/N; and G, where H/N; is definable over ¢; € acl(c).
By the claim c; is independent with a over §. Thus Step I is complete.

Step II. From H, ¢ and h as given by Step I, we construct a commutative group
H,, defined over Q(c) in U, and a surjective homomorphism h;, definable in
Um, from H, to E.

Let r € S(Q(a)) be the generic type of G, and r~ the reduct of r to U~
So r~ is precisely the generic type of E (over a). Note that RM H is finite. By
Lemma 1.1 (and its proof), we may assume that H is a subgroup of a group
defined over kg = Q(c) in U~. In particular the group operation on H is
definable in U~ over kg. Let k be some differential field containing a,c such
that the isomorphism k is defined over k (in U). Let b be a generic point of
H over k. Then h(b) is a generic point of G over k. Moreover, by quantifier
elimination, there is some n, such that h(b) € k(b,t’, .., 5(™)) (the field generated
by k together with {,%,..,6(™}). Thus h(b) = hy(b,¥’,..,b(")) where h(y) is
k-rational. Let ¢— = tp~(b,¥,..,b(") /Q(c)). As in the proof of Lemma 1.1,
mulitiplication on H induces a kq-rational generically associative map * from
¢~ X ¢— to ¢—, yielding as there a (commutative) group H,, say, definable over
ko in U~ and with generic type ¢~, and with group operation agreeing with *
generically. It is clear that for b realising ¢~ |k, hyi(b) realises 7~ |k. It should
also be clear that for generic k-independent (in the sense of U~) realisations b, ¢
of ¢~ |k, h1(b-¢) = hi(d) - h1(c). Thus h, defines a k-rational isomorphism from
H,, onto E.

Step III. We find a quotient group B of H,, definable over acl(Q(c)) in U,
which is definably (in U~) isomorphic to G.

This part of the proof just involves facts about algebraic groups. We now
use the fact that H,, (obtained in Step II) has the structure of a (commutative)
algebraic group defined over kg = Q(c), and that h, is a rational homomorphism
from H, onto the elliptic curve E. Now H, has a unique maximal connected
linear algebraic subgroup L, and H,/L is an abelian variety. As there is no
nonzero rational homomorphism from a linear algebraic group into an abelian
variety, it follows that L < ker(h,). Note that (by uniqueness) L is defined over
ko (in U™), thus H,/L is also defined over ky. Now if A is an abelian variety
defined over ko then any algebraic subgroup of A is defined over acl(ko). Thus
in particular, we see that ker(h,) is defined over acl(ko). Let B = Hy /ker(hy).
Thus B is an algebraic group defined over acl(ko) and h; induces a rational
isomomorphism hy say between B and E. Thus B is also an elliptic curve,
whereby j(B) = j(E) (by 2.1 (ii)). By 2.1 j(E) € Q(a)n acl(Q(c)). But
Q(a) is independent from acl(Q(c)) over @ in U, so the same is true in U™, thus
a = j(E) € acl(Q), which is a contradiction to the choice of a. This contradiction
proves Theorem 2.5.
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Corollary 2.6. DCF; has 2%° countable models.

Proof.

Let E(a) be an elliptic curve defined over a (in U~) and with j-invariant
a, where a € U is differentially transcendental over 0. Let G = G(a) be a
subgroup of E(a) given by Corollary 2.4. Let p(z) € S(a) be the generic type
of G. By Theorem 2.5, p(z) is orthogonal to §. We will show that DCF,
has “ENI-DOP”. Formally T having “ENI-DOP means that there are models
Mo, My, M2, M such that My C My, My C M;, M, is independent from M,
over My, M is prime over M1U M3, and there is a strongly regular stationary
“eventually nonisolated” type p; € S(M) such that p is orthogonal to M; and
orthogonal to M. (A stationary type ¢ is said to be eventually nonisolated if
there is a finite set A and a stationarisation of ¢ over A which is nonisolated.).
To obtain this, let My be some model independent with a over . Let b,c be
independent generics of U over My such that b+c = a. Then {a, b, c} is pairwise
independent over @, and also pairwise independent over My. Let M; be prime
over MoU{b}, and M; prime over Mo U {c}. In particular a is independent from
each of My, M, over @ . Thus p(z) is orthogonal to each of My, M,. Let M be
prime over M; U M. Then a € M. We can find types pi, .., pm over M each of
Morley rank 1 such that p(z) is domination equivalent to pl1®- - -® py, (this uses
the fact that p(z) is the generic type of a group of finite Morley rank.) Thus
each p; is orthogonal to each of M;, M;. Now G is divisible. So as a structure
in its own right (namely with all a-definable structure induced from U) G is not
Rg-categorical. It easily follows that some p; is eventually nonisolated. (In fact
the fact that G has no proper infinite connected a-definable subgroups implies
that G is almost rank 1, namely that after adding finitely many parameters,
there is a Morley rank 1 (not necessarily degree 1) subset X of G such that G €
dcl(X). As G is not No-categorical, some strongly minimal subset of X is not
Ro-categorical, yielding the required ENI-type.) So p; witnesses ENI-DOP. By
[SHM], DCF; has continuum many countable models.

Remark 2.7. As we shall see below, if £ is an elliptic curve, then any infinite
definable (in U) subgroup of E contains Tor(E), and thus E has a unique min-
imal infinite definable subgroup (of finite Morley rank). This is also true if £
is a simple abelian variety, namely an abelian variety without proper connected
nontrivial algebraic subgroups. Thus the group G in 2.4 can be taken to be min-
imal (namely without proper connected definable subgroups). In fact making
use of the Zariski interpretation, one can show (as we do later) that G must be
actually strongly minimal.

In the remainder of this paper we develop tighter connections between
groups definable in U and those definable in U~. In particular we obtain (fol-
lowing Buium [B2]) a generalisation of Lemma 2.3 to arbitrary abelian varieties.
This is connected with Manin’s “Theorem of the kernel” from [M].
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§3 Jet Groups.

In this section we develop the theory and some properties of the “twisted
jet groups” of Buium [B2)], but working in the definable category. We work as
before in the big differentially closed field U.

As motivation let us first consider the general linear group G = GL(n,U).
If the matrix X = (z; ;) € G, let X’ denote the matrix whose i, j*® coordinate is
z ;. Theset {(X, X’) : X € G} has a natural group structure: (X, X’)-(Y, Y)=
(XY,(XY)). It is rather clear that this group is precisely the subgroup of

GL(n,U) consisting of matrices
X X
0 X
where X € G.

The Zariski closure of this group in GL(2n,U) is the set of matrices

(v %)

with X € G and Y arbitrary. Let us call this group Gj.
We have a natural projection map p : G; — G whose kernel is the group of

matrices
1Y
0 I

where Y is an arbitrary n x n matri)g. Let us call this kernel L;. Note that L,
is isomorphic to the vector space U™". In fact L, is precisely gl(n, U), the “Lie
algebra” of G, and G splits as a semidirect product of the group of matrices

(v %)

with L;. Let us call the first group Gy, (a copy of G). The action of G1,; on
L, by conjugation in G; is exactly the action of G on gl(n,U) by conjugation,
inducing the “adjoint” representation. We also have a map f : G — L; defined
in DCFy, obtained by taking X to (X, X’) € G; and then projecting onto L;. (f
will not be a homomorphism, but a crossed homomorphism. ) It can be checked
that f is precisely the map X — X~1X’. Thus Ker(f) is G(C) = GL(n,C),
the group of C-rational points of G. By comparing with [Bo. AG 16 and 1.3],
we see that G is precisely the tangent bundle of G. Note that the process can
be iterated, to obtain linear algebraic groups G,,Gs, ... where for example G5
is the group consisting of matrices

XY Z
0 X Y
0 0 X

with X € G,Y,Z arbitrary. These groups are the natural jet space groups
attached to G (higher versions of the tangent bundle).
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We proceed to develop these objects in greater generality. As mentioned
above, we work in the definable category (namely we do not concern ourselves
with the geometric structure of objects). The constructions below generalise
arguments in the proof of 2.5.

Definition 3.1. Let G be a connected group definable in U, defined over k£ C U.
So a point of G is some n-tuple from U. If a = (a,,..,a,) € Gthen by a’ we
mean the tuple (af,...,a}).

(i) for m > 0, em(G) denotes the group ({(a,d’,..,a™) : a € G}, *(m))
where the group operation *,,) is defined by :

(@,@,...,a™) %y (b,F,...,b(m)) = ((a-b), ..., (a- b)™).

(So eo(G) is precisely G). We also let e, denote the map from G to e, (G) :
aw (a,d,...,alm)).

Remark 3.2. (i) For any m > 0, e,,(G) is also a connected group definable in U
over k, and e, is a k-definable group isomorphism.

(ii) Suppose that the group operation on G is definable over k in U™, namely
there is a partial function f( , ) defined over k in the field language, such that
for a,b € G, f(a,b) = a-b. Then for any m, the group operation *(m) 18 also
defined over k in U~. For example this is the case if G itself is definable in U~
or if G is a subgroup of such a group.

As mentioned earlier RM~ denotes Morley rank computed in the structure
U~. For the remainder of this section we assume that G is a group definable
over k in U~, which is connected in U™, and thus also connected in U. (The
latter fact is not obvious. It is due to Kolchin (see appendix C of Marker’s paper
[Mr] in this volume. The special case we use here is also proved in [HS].)

Construction 3.3.

We construct, for each m, a group G,, also definable over k in U~ and
surjective homomorphisms 7., : G, — Gpy_1.

For m =0,G,, = G.

Let m > 1. Let a be a generic point of e, (G) over k (generic in the sense
of U). (Note that a is then of the form (a,d’,...,a(™)) = e (a), where a is
some generic point of G over k, in the sense of U.) Let pp,(z) = tp(a/k), and
P (z) = tp~(a/k). So p~ is uniquely determined and is moreover a stationary
type. Let us write simply . for multiplication in e,,(G). Let a,b,c be an
independent (in U) set of realisations of pp,. Then (a-b)-¢c =a-(b-c), and (a-b)
is independent from c over k etc. Now working in U~ a, b, ¢ are also independent
realisations of p, over k, and the above independence facts remain true. Also by
3.2 (i1), the group operation - is definable over k in U~. So a result of Hrushovski
[Po, 5.23] (or equivalently Weil’s theorem) yields a connected group Gm definable
over k in U~ , whose generic type is p~, and whose group operation agrees with .
on independent realisations of p~. So we have defined the groups G,,. To obtain
the homomorphisms 7,,, note that, for all a € G and in particular for generic
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such a, e;,_1(a) is a subtuple of e;(a). Define mm(em(a)) = em—1(a). Then
clearly p,,_; is a map, defined over k in U™, from the realisations of p, onto the
realisations of p,, _;, which is “generically” a group homomorphism from Gy, to
Gm_1. Namely for independent realisations a, b of p;,, Tm(a-b) = mm(a) - mm(b).
Thus 7,, extends to a surjective homomorphism from G, to G, -1, defined over
kin U-.

The above construction yields an identification of the generic points of
em(G) with certain generic (in U~) points of Gr, (via the identity map). We
would like however to identify in a U~ -definable manner all of e, (G) with a sub-
group of Gp,. This is actually quite straigtforward, and can be obtained (as we
show now) through the Hrushovski construction of Gm as the group of “germs”
of U~ -definable generically defined maps from py,, to p,, — generated by the maps
fa : b — axb for generic independent realisations a, b of p,,. (Here we let * denote
the group operation on e, (G).) In particular G “is” the group of such germs of
the form f;, - fa,. Let now O be the set of {(a,d) : a,b both realise p~, a* b is
defined, and for generic c realising p~, (a*b) *(c) = a*(b*c)}. Then Oincludes
{(a,bd) : a,b are generic points of e,,(G)}. Define an equivalence relation ~ on
O, by (a,b) ~ (a1,b,) if for generic c realising p~, a*(b*c) = a; *(by *¢) (if and
only if (a,b) and (a1, b,) define the same germ, namely the same element of Gp,).
So we see that O/ ~ “is” a subset of Gy,. Let X = {c : for some (a,b) € O, a*b
is defined and equals c, and for generic d realising p~, (c*d)*d~! is defined and
equals c}. Then clearly e,,(G) € X and X is co-definable over k in U~. Define
amap f from X into G, by: if ¢ = a x b for (a,b) € O, then f(c) = (a,b)/ ~.
Clearly f is well-defined (for if ¢ = a; * b; for (@1,b1) € O then for generic d
realising p~, (a*b) *d = cxd = (al #*b1) xd). On the other hand f is 1-1, for if
f(c) = f(c1), then for generic d realising p~, we must have cxd = c; *d. By the
second clause in the definition of X, we conclude (after “multiplying” by d—1)
that ¢ = ¢;.

Now f is k-definable in U~. By compactness we can find sets Xy D X and
Yo C G, both definable over k in U~ and a bijection g between X and Y,
also defined over k in U~ such that the restriction of g to Xis precisely f. So the
restriction of the map g to e, (G) defines a group embedding into Gy, extending
the identity map on p~. By means of this embedding we can and will assume
that e, (G) is actually a subgroup of Gy,, and thus that e, is an embedding of
G into Gp,. If the reader is unhappy with this, he or she can work with elements
of g(em(G)) (g as above) in place of e,,(G). (Note that it is trivial to find an
embedding of en(G) in Gy, definable in U, but the question here was to find
one “definable in U~”.)

Lemma 3.4. (i) RM~(Gp) = (m + 1)RM~(G), for all m.
(ii) If X is a subset of G which is definable in U, then for some m there is
a subset Y of Gy, definable in U~ such that e,(X) =Y C e,(G).
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(iii) If H is a (connected) subgroup of G which is definable in U, then for
some m there is a (connected) subgroup H,, of Gy, definable in U~ and such
that en, (H)

Proof.

(i) Suppose RM~(G) = n. Let a be a generic point of G over k in the sense
of U. Then clearly n = differential transcendence degree of k(a) over k. In fact
n of the coordinates of a are differentially transcendental over k, and the rest
are algebraic over these together with k. So clearly the transcendence degree
of k(a,d’,...,a™)/k) = (m + 1)n. Thus RM~(tp~(em(a)/k) = (m + 1)n. As
tp~(em(a)/k) is a generic type of Gy, it follows that RM~(Gp,) = (m + 1)n.

(i1). By quantifier elimination in DCFj, there is some m < w and some
formula ¢(zg,z1,...,z,,) (with parameters) in the language of fields such that
X ={a € G:UE ¢(a,d,..a™}. So simply let Y be the subset of Gy,
defined by ¥(z).

(iii). This does not appear to follow directly from (ii). We may assume H
is defined over k. Let again m < w and ¥(2o,..,2m) be a formula (over k) in
the language of fields such that ¢(z,z’, ...,2(™)) defines H in U. Then again
em(H) = {(z0,21,-,2Zm) € Gm : (%0, ..,Zm) € em(G) and ¥(zo,..,zm)}. Let b
be a generic point of H over k. Then en(b) is a generic point of e, (H) over
k. Let ¢~ (z) = tp~(em(b)/k). As in Construction 3.3, the realisations of ¢~ in
Gp, are closed under generic (in U~) multiplication. Thus basic stable group
theory yields a connected subgroup H,, of G,,, definable in U~ over k, and with
generic type ¢~ .

Claim. Hp, Nem(G) = em(H).

Proof of claim. Clearly e,(H) C Hpm (as any element of e,,(H) is a product
of generics of e, (H), and all generics are in Hy,. For the other inclusion it
is enough to show that if ¢ = (c, ¢/, ..., (™) is a generic point of H,, N e (G)
over k (in the sense of U) then ¢ € en(H). Let ¢ be such. It is then easy
to see that tr.degree(c/k) > tr.degree(em(b)/k) (where remember e, (b) was a
generic point of e, (H) over k). On the other hand, as ¢ € Hy, and ¢~ is (the
unique) generic (in U~) type of Hp,, it follows that RM~(c/k) = tr.degree(c/k)
= tr.degree(¢~) (=RM(¢~)). Thus tp~(c/k) = ¢~. In particular U = 9(c),
namely U = ¢(c, ¢, ...,c(m)). So ¢ € en(H).
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§4 Vector groups, the Buium-Manin homomorphism and rank 1 types.

We begin to make more use of notions from algebraic geometry. The reader
is referred to [Sh]. Recall the notation from section 3 : given a connected
group definable in U~, we have groups Gy, Gz ... definable in U~ and rational
homomorphisms 7, : Gy X Gm—1. Let 7, be the induced homomorphism from
G onto G = Gy.

Lemma 4.1. Suppose Gis an algebraic group defined over k, of dimension n
(namely RM~(G) = n. Then for all r, ker(r,) is a vector group of dimension
r.n.

Proof.

We just sketch the proof. We first do it for the case r = 1. Let V be an
affine open neighbourhood of the identity in G, V' C U™, some m, such that the
identity element e of G is the origin (0, ...,0). Assume G is defined over k. Let
O, denote the local ring of G at e, and m, its maximal ideal. We also assume
that the first n coordinates of z = (z1,..,2m) € V form local coordinates (or
parameters) for G at e. Namely the coordinate functions z, ..., z, form a basis
of the k-vector space m./m2. One also knows that zi,..,z, generate m. (in
O.). Thus there are a; ; € k such that £ € V has the form

n n
(@1, n, 3 U128 )(m2), .., Y 05 ma’)(m2)).
i=1

i=1

Namely for j =n+1,..,m,

n
T = Za;,j:cimod(mf).

i=1

As any element of m? is of the form Y f;z; for f; € m., this means that for
i=n+1l,.,m,z; =) a;jz; + 3 fijzi (Where f;; is in m,). (%)

We now want to bring in the group G;. Let = denote a point of U™. With
a little work we can consider V; = Zariski closure in U?™ of {(z,2') : z € V},
as an affine open subset of G, with (0,0) the identity of G1. Let OCV x V =
{(z,y) € VXV :z-y €V}, where z - y refers to multiplication in G. Then
the group operation on O is given by a rational function f(-,-) (defined over k).
The function which takes ((a,a’), (b,5')) to (a - b),(a-b)’) for (a,b) € O, is also
a rational function f; say defined over k. Then we can assume that whenever
(a,a1) € V1, (b,b1) € V1 and the product (in G1), (a,a;) - (b,b1) € V4, then this
product is fi((a,a1),(b,b1)). Now z1,..,z, are also differentially independent
parameters over k, so generically {z1,..,zn,2!,...,2,} is algebraically indepen-
dent over k. Thus we can choose an affine open neighbourhood of the identity
in Gy, a point of which has the form (z,.., 25, Znt1,. Zm, t1, <o ta, tng, - tm),
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where the z; satisfy (%), z1,..,Zn,11,..,t, are local parameters at the identity
(0,.....,0) of Gy, and for j = n+1,..,m, t; is of the form:

n n n

> (e i + o ti) + Y giizi+ ) fiti. (**)

i=1 i=1 i=1

where f;; = fij(z1,..,2n) € m, and g;; is some rational function of
(z1, -y Zn,t1,...,tn). Now such points (z,t) with z = (0,..,0), clearly form
an open neighbourhood of the identity in the algebraic group ker(w;) C G;. By
(**) any such point has the form:

n n
(0, ..., 0,1y, ..,tn), E a,-,,,+1t,-, ey Z a,-’mt,-). (* * *)
=1 i=1

On the other hand, it is well-known (see [L]) that (working back in the original
affine- open neighbourhood V of G) for (generic) z,y € V, and ¢ = 1,..,n,
(z - y)i = (zi + yi) mod M2, where M is the maximal ideal of the local ring
at the identity of G x G. It follows from this together with (* * %) that for
generic (0,1),(0, s) in ker(m), (0,t)-(0,s) = (0,¢+s). Thus generically ker(m;)
is isomorphic to the group U”. So ker(m;) is isomorphic to U™, as required.

Suppose the lemma is proved for 7. The kernel of the projection (G,)1 — G,
is a vector group, by what we have just shown. On the other hand this clearly
factors through p,4+1 : Gr41 — Gr. So ker(m,) is a vector group (of dimension
= dim(G)). Composing with 7, completes the proof.

The dimension assertions are contained in 3.4 (i).

Lemma 4.2. Let A be a connected commutative algebraic group. Let B be a
connected definable (in U) Zariski-dense subgroup of A. Then A/B is definably
isomorphic to a subgroup of U™ ( for some n). In particular B contains the
torsion part of A. Proof. Let Ag = A, Ay, ... be as in section 3. By Lemma 3.4
there is some m such that e, (B) = By Nepm(A). As B is Zariski-dense in A,
clearly 7p|Bmis onto A. Let L, = ker(7,). Then Ay = ByLp,. As (by 4.1)
L,, is a vector group, By, N Ly, has a complement L in L,, and A,, is the direct
product of By, and L. Let 7 be the corresponding projection map from A,,, onto
L. Let f be the homomorphism A — L defined by: f(a) = n(a,d’,...,a™).
Then a € ker(f) iff (a,d’, ..,a™) € By, iff (a,d, ..,al™) € e,,(B) iff a € B.

Note that this lemma recovers Remark 1.7 (ii).
Corollary 4.3. Let A be a simple abelian variety. Then A has a unique minimal

infinite connected definable subgroup.

Proof. As A has no proper connected nontrivial algebraic subgroups, every
infinite definable subgroup of A is Zariski-dense. In particular, by 4.2, any
infinite connected definable subgroup of A contains the torsion part of A (which is
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known to be infinite). Thus the intersection of all connected definable subgroups
of A is infinite, and is definable (by w-stability).

Nothing we have said so far shows that proper definable subgroups exist.
We proceed to show that one can always find definable subgroups of finite Morley
rank (of abelian varieties).

As in Buium’s treatment we require the following result of Rosenlicht [R.
Lemma 3]:

Fact 4.4. Let A be an abelian variety, B a vector group, and G an extension of
A by B. (Namely we have an exact sequence of algebraic groups:

0—-B—-G—A—0)

Then there is a connected algebraic subgroup G of G such G; projects onto A
and dim(G;) < 2dim(4).

Proposition 4.5. Let A be an abelian variety. Then A contains an infinite
definable subgroup B of finite Morley rank.

Proof. Let A,, be as in section 3. Let 7,, be the projection A,, — A (compo-
sition of the ;). For each m there is a unique minimal algebraic subgroup By,
such that B,, projects onto A under m,,. (Uniqueness is by the fact that if B,, B,
both project onto A then each of A,,/B;, A;,/B; embeds in the vector group
L, = ker(ry), whereby Ap/(Bi N By) embeds in a vector group, so By N By
projects onto A. The last implication is due to the fact that there is no nontrivial
homomorphism from a vector group into an abelian variety.) By uniqueness we
conclude that 7, maps B,, onto B,,_1. On the other hand Fact 4.4 says that
dim(B,,) is bounded by 2dim(A). Let D = {a € A : (a,d’, ...,a™)) € By, for all
m}. Then D is a definable subgroup of A.

Claim. D has finite Morley rank.

Proof.

Assume everything is defined over £ C U. The bound on the dimensions
of the B,means that tr.deg(k(a,d’, ...a(m),...)/k) is finite, for any a € D, and
thus RM(tp(a/k)) is finite for any a € D. Thus RM(D) is finite.

Putting together 4.3 and 4.5 we have:

Corollary 4.6. Let A be a simple abelian variety. Then A contains a unique
smallest definable nontrivial connected subgroup of finite Morley rank.

Lemma 4.7. Suppose A, B are simple abelian varieties, and G, H are definable
subgroups of A, B respectively. If G is definably isogenous to H, then A is
rationally isogenous to B (namely isogenous by a map definable in U~).
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Proof.

Without loss of generality, H is definably isomorphic to G via the isomor-
phism f : H — G. Assume everything is defined over k. We use the notation of
section 3. Let b be a generic point of H over k. Then for some n and for some
k-rational function fi, f(b) = fi(b,¥',...,5(™). b is a generic point of B over
k (in the sense of U~) and f(b) is a generic point of A over k (in the sense of
U-) (as G is Zariski-dense in A and H is Zariski-dense in B). Also (b, ¥, ..,5("))
is a generic point of the group H, over k (in the se nse of U~). Thus clearly
f1 gives rise to a surjective k-rational homomorphism from H,, onto A. Let 7,
denote the canonical k-rational surjection B, — B. Then ,|H, : H, — B is
surjective. Let L = ker(mq|Hn). So L C ker(r,) and the latter is, by 4.1 a
vector group. As there is no nontrivial rational homomorphism from a vector
group into an abelian variety, it follows that L C ker(f;). Thus f; induces a
rational map from H,/L onto A. As H,/L is rationally isomorphic to B, we
obtain a rational homomorphism h from B onto A. As B is a simple abelian
variety, h is an isogeny (namely has finite kernel). This completes the proof of
4.7.

We now bring in some rather heavier model-theoretic facts.

Fact 4.8. [HS, HZ]. Let X be a strongly minimal set definable in U. If X is
not locally modular then a strongly minimal field is definable in X4,

Let pc denote the generic type of the constants Cy of U. pc has Morley
rank 1.

Corollary 4.9. Let ¢ be a non locally modular type of RU-rank 1 (in U). Then
¢ is nonorthogonal to pc.

Proof. Let X be a strongly minimal set in ¢. By 4.8 some infinite field (of finite
Morley rank) F', is definable in X*3. By Corollary 1.6, F' is definably isomorphic
to Cuy. This clearly suffices.

Finally we describe a relationship between nontrivial types of Morley rank 1
which are orthogonal to pc and simple abelian varieties which are not rationally
isomorphic to algebraic groups defined over Cyy. We are interested in such types
up to nonorthogonality, and some groups up to rational isogeny.

First let ¢ be such a type. By 4.8, ¢ is locally modular and hence by [H],
there is a strongly minimal group G whose generic type is nonorthogonal to
g, so is without loss ¢ itself. By 1.1, let A be an algebraic group in which G
is definably embedded. As G is commutative and strongly minimal, we may
assume that A is commutative, connected with no proper connected algebraic
subgroups. A is then either a linear group, or a simple abelian variety. If A is
linear, then the proof of Theorem 1.5 shows that G is definably isomorphic to a
group living in Cy, contradicting the nonorthogonality of ¢ to pc. Thus A is a
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simple abelian variety. Note that G must be the unique minimal finite Morley
rank definable subgroup of A. |

On the other hand, let A be a simple abelian variety not rationally isomor-
phic to an algebraic group defined over Cy. Let G be the definable subgroup
of A given by 4.6. Then G is connected, infinite, and has no proper infinite
definable subgroups. Thus G is almost strongly minimal. Let X be a strongly
minimal subset of G. If X is not locally modular, then by 4.8 the generic type of
X is nonorthogonal to pc. In particular the generic type of G is nonorthogonal
to pc. As in the proof of 2.5 (Step I), G is definably isomorphic to a group H
living in Cf'. As in Step II of the proof of 2.5, A is rationally isomorphic to an
algebraic group defined over Cy, contradicting our hypotheses on A.

It follows that X must be locally modular. As G is almost strongly minimal,
G is a 1-based group. By [HP], and the “minimality” of G, G is already strongly
minimal. Let ¢ be the generic type of G.

Proposition 4.10. The above relationship establishes a bijection between the
nonorthogonality classes of nontrivial Morley rank 1 types which are orthogonal
to pc, and the isogeny classes of simple abelian varieties which do not “descend”
to Cu.

Proof.

Let A, B be simple abelian varieties, G, H strongly minimal locally modular
definable subgroups of A, B respectively. Let ¢, be the generic types of G, H
respectively.

From the above discussion it is clearly enough to prove that A is isogenous
to B iff ¢ is nonorthogonal to r. First suppose that f is a rational isogeny of A
with B. Thus f(G) is a strongly minimal subgroup of B. By 4.6, f(G) = H.
Thus (as f is finite-to-one), f witnesses the nonorthogonality of ¢ and r. Con-
versely suppose ¢ is nonorthogonal to r. As G and H are both locally modular
strongly minimal groups it follows that G and H are definably isogenous. (After
naming enough parameters, we have generics a € G,b € H such that @ and b are
interalgebraic. Now G x H is a “l-based group”. Thus by [HP] tp(a,d) is the
generic type of a strongly minimal subgroup of G x H, which yields the required
isogeny. By 4.7 A and B are rationally isogenous.
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85 Zariski-dense definable subgroups of simple algebraic groups.

Finally we give a sketch proof (due essentially to Buium [B2]) of the infinite
Morley rank case of Cassidy’s theorem. We start with a simple (noncommuta-
tive) group G, definable in U and of infinite Morley rank. The aim is to show
that G is definably isomorphic to an algebraic matrix group H C GL(n, U) for
some n.

First, a proof like that of Corollary 1.2, but using so-called *-groups, shows
that G is definably embeddable in GL(n, U) for some n. (This appears in [P2)].)
Let H be the Zariski-closure of G. Using the simplicity of G, we may assume
that H is simple (i.e. has no normal algebraic subgroups). So we are finished if
we prove:

Proposition 5.1. Let H be a simple algebraic group over U, and G a Zariski-
dense definable (in U) subgroup of H with infinite Morley rank (in U). Then
G=H.

Proof.

It is known that any simple algebraic group over an algebraically closed field
is rationally isomorphic to a matrix group defined over the prime field (namely
Q). So we may assume H is such. We make use of the following:

Fact. The action of H on its Lie algebra by the adjoint representation is irre-
ducible.

Let us go back to the “jet groups” Hj, Ha, etc. As in the beginning example
in section 3, the action of H on ker(m;), defined by : for a € H, b € ker(m),
let a; € Hy be such that 7 (al) = a, and define 4% = azl‘1 -b-a, is exactly the
adjoint action of H on Lie(H). It follows similarly that for any m, the action
of H,, on ker(my,41), defined in a similar fashion, is isomorphic to the action of
H on Lie(H). Thus all this actions are irreducible.

Now suppose that G # H. By Lemma 3.4, for some m, G,, is a proper
algebraic subgroup of H,,. Choose least such m. (Note m > 0, as Gy =
Hy = H). It follows that 7, |Gm : G, — Hp,_1 is surjective. Let Lm C H,,
be the kernel of w,,. Thus L,, N G,, is a proper subgroup of L,, which is
invariant under the above-mentioned action of H,,_;. By irreducibility, L., N
G, = {0}. This says that 7, |Gy, is finite-to one. In particular for generic a €
G,a™ €acl(a,d, ...,a™=1 k) (where k is some field over which G is defined).
It follows easily that RM(¢p(a/k)) is finite, thus RM(G) < w, contradiction.
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