
Computationally-Sound Proofs

Silvio Micali

Department of Computer Science
Massachusetts Institute of Technology

Cambridge, MA 02139, USA
silvio@theory.lcs.mit.edu

Abstract. This paper puts forward a new notion of a proof based on

computational complexity, and explores its implications to computation

at large.

Computationally-sound proofs provide, in a novel and meaningful frame-

work, answers to old and new questions in complexity theory. In partic-

ular, given a random oracle or a new complexity assumption, they allow

us to prove that verifying is easier than deciding; to provide a quite effec-

tive way to prove membership in computationally hard languages (such
as Co-ΛΛP-complete ones); and to show that every computation possesses
a short certificate vouching its correctness.

1 Introduction

A new notion. Proofs are fundamental to our lives, and as for all things

fundamental we should expect that answering the question of what a proof is

will always be an on-going process. Indeed, we wish to put forward the new

notion of a computationally-sound proof (CS proof for brevity) which achieves

new and important goals, not attained or even addressed by previous notions.

Informally, a CS proof of a statement S consists of a short string σ, very

easy to verify and as easy to find as possible, offering a strong computational

guarantee about the verity of S. By "very easy to verify" we mean that the time

necessary to inspect a CS Proof of a statement S is poly-logarithmically shorter

than that required to decide S. By "as easy to find as possible" we mean that

a CS proof of a true statement (i.e., for the purposes of this paper, derivable

in a given axiomatic theory) can be computed in a time essentially comparable

to that needed to decide the statement. Finally, by saying that the guarantee

offered by a CS proof is "computational" we mean that false statements either

do not have any CS proofs, or such "proofs" are practically impossible to find.

Implementations of CS proofs. The value of a new notion, of course, cru-

cially depends on whether it can be sufficiently exemplified. We provide two

215

main implementations of our notion. The first consists of an explicit construc-

tion, based on a random oracle, that provably yields a CS proof system without

any complexity assumption. The second implementation, which is the subject of

a forthcoming paper, is cryptography-based, and yields a CS proof system under
a new complexity assumption.

Applications of CS proofs. CS proofs provide, in a new and meaningful
framework, very natural answers to some of our oldest questions in complex-

ity theory. In particular, they imply that verifying is poly-logarithmically easier
than deciding. More importantly, they actually imply that this is almost always

the case, rather than a phenomenon possibly occurring for some special theo-
rems. CS proofs also provide a quite effective way for proving membership in
computationally hard languages (e.g., Co-MP complete ones).

In addition, CS proofs have novel and important implications for computa-

tional correctness. In particular, they imply that every computation possesses

a short certificate vouching its correctness. Cryptography-based CS proofs also
imply that any heuristic or program for a ΛΛP-complete problem is cryptograph-

ically checkable. This application at the same time extends and demonstrates

the wide applicability of Blum's [8] original framework for checking program

correctness.

We wish to emphasize that the above mentioned applications of CS proofs
to computation at large have been obtained by means of surprisingly simple

arguments. Indeed, after setting up the stage for the new notion, the results

about computational correctness fall with the ripeness of a Newtonian apple.

This simplicity, in our opinion, eloquently vouches for the power of the new

perspective.

Roots of CS proofs. In conceiving and constructing CS proofs, we have ben-
efited from the research effort in interactive and zero-knowledge proofs. In par-

ticular, the notion of a probabilistically-checkable proof [3] [13] and and that of

a zero-knowledge argument [11] have been the closest sources of inspiration in

conceiving the new notion itself. In exemplifying the new notion, most relevant

is a construction of Kilian's [22]; also relevant have been the works of [14] and

[6].

2 Prior Notions and New Goals

The problem of defining the intuitive notion of an efficient proof has definitively

attracted a lot of attention in the last three decades; indeed, the notions of λίP,

IP, and PCP are notable fruits of this long research effort. Yet, our developing

CS proofs has been motivated by our perceiving and wishing to express some new

216

aspects of an efficient proving process. These additional aspects are informally
presented in this section, and our way to capture them formally in the next one.

Prior to sketching out our new goals, we recall some prior notions of an effi-

cient proof, both because they have been inspiring for our venture, and because

they will, by contrast, help us express what our new desiderata are. We actually

find it useful going as far back as recalling the "classic notion of a proof," but

in a way that instrument ally paves the road to our new notion.

2.1 Prior Notions of a Proof

Proceeding directly to give the definition of a CS Proof is attractive in that it

would minimize the number of possible objections. (After all, one can define

anything.) We feel, however, that CS Proofs are better understood "in context",

that is, by comparing them to the notions that preceded them.

To be sure, no such comparison can be objective. Classical proofs, for in-

stance, and CS Proofs are so different that any comparison presupposes reduc-

ing them first to a common "denominator". In so doing (apples and oranges as

they are), one must introduce some distortion or oversimplification (e.g., over-

emphasizing some of their aspects at the expense of others), and rely heavily on
the fact that "words" may remain the same, while their "meanings" do not. But

the alternative would be not to compare at all.

Accordingly, below we provide a summary of prior notions for pure compari-

son purposes (no survey intended), with the understanding that its value is that

of a subjective summary. In a sense, it is the author's account of how he came
to think of CS Proofs.

The Classical Notion of a Proof

What is true? What does it mean to prove that something is true? These are

questions that go hand in hand. Indeed, as formalized in the first half of this cen-

tury by a brilliant series of works, the classical notion of a proof 1 is inseparable

from that of a true statement. Given any finite set of axioms and inference rules,

1 Thinking that the intuitive notion of a proof has remained unchanged from the times

of classic Greece (i.e., thinking that people like Peano, Zermelo, Frankel, Church, Tur-

ing, and Gόdel have only contributed its rigorous formalization and the discovery of

its inherent limitations) is certainly appealing, but unrealistic. Personally, we believe

that no notion so fundamental and so human can remain, not even intuitively, the

same across so different spiritual experiences and historical contexts. No doubt, our

yearning for permanence (dictated by our intrinsically transient nature) predisposes

us to perceive more continuity in our endevours than may actually exist.

Having said this, the author firmly believes that the above mentioned formaliza-

tions of the notion of a classical proof are the only meaningful ones!)

217

the corresponding true statements form a semi-recursive set. (Again, through-
out this work true is considered equivalent to derivable.) In the expressive and

elegant approach of Turing, such sets possess two equivalent characterizations

particularly important for our enterprise, one in terms of deciding algorithms
and one in terms of (proof-) verify ing algorithms:

1. A language (set of binary strings) L is semi-recursive if and only if there
exists a (deciding) Turing machine D such that

L = {x : D(x) = YES}.

2. A language L is semi-recursive if and only if there exists a total (verifying)
Turing machine V such that

L = {x : Ξσ E {0,1}* such that V(x, σ) = YES}.

Deciding the verity of a statement is thus a purely algorithmic process, and

classical proofs —the σ's of the second definition— are just strings.

Stating that classical proofs are "just string" might appear quite diminishing.
In an ordinary sense, proofs possess additional characteristics (insightfulness,

elegance, usefulness, etc.) and may even be emotionally charged, but, formally

speaking, a classical proof is a string satisfying special syntactic constraints. Call

it "Turing machine" or "procedure", any proof system that is formal enough must

specify in sufficient detail a verification algorithm. Proofs then are those strings
that (relative to a given statement) are "accepted" by such an algorithm.2

We should also clarify that, though we all experience abbreviations and

"reusability" of proofs to be essential to the mathematical enterprise (we rarely,

if ever, deal with proofs from "scratch"), in this paper proofs are thought of as

self-contained and abbreviation-free.3

Finally, let us recall that, for the purposes of this paper a "true" theorem

simply is one derivable in a given theory. Thus, for variety of discourse, we may

call a member of a semirecursive language a theorem or a true statement, and a

classical proof a derivation.

2 The "non-logician" should realize that this is also the case for formalizations other

than Turing machines. For instance, roughly, a classical proof of a statement can be

viewed as a sequence of "lines", each being an axiom (out of a given set) or obtained

from previous lines according to one inference rule out of a finite set (e.g., if one

line is "A" and another is "A implies B", then it is fine to write down a new line

consisting of "B") whose last line is the statement in question. Here too, therefore,

proofs are strings satisfying some proper syntactic constraints.
3 Modularity is however so important that we actually wonder whether it is possible to

develop a meaningful and formal model to measure the "centrality" and "usefulness"

of lemmas and theorems in a given theory (e.g., one where weights are algorithmically

associated to each derivable statement).

218

Proofs Versus Efficient Proofs

The two classical definitions of semi-recursiveness recalled above are equiva-
lent in the sense that they identify the same sets.4 Of course, they are syntacti-
cally different, but they are indistinguishable from the point of view of compu-
tational convenience. Indeed, classical proofs are more a way of expressing what
is in principle true rather than a way of capturing what is efficiently provable.
In fact, providing a derivation is certainly a way to convince someone that a
given theorem is true, but is not necessarily at all efficient: a classical proof may
be arbitrarily long, or its relative verifying algorithm may take arbitrarily many
computational steps to verify it.

The above criticism, of course, unfairly presupposes the more modern comple
xity-theoretic point of view. Indeed, going back to a recent past, one might le-
gitimately object that what is true has nothing to do with how long it takes to
determine it. It is thus better to say that the advent of complexity theory has
allowed us to perceive a new concept by distinguishing two notions, "truth" and
"proof" in what used to be —at least formally if not intuitively— an undiffer-
entiated one.

To be sure, proving and deciding may have always been psychologically dif-
ferent notions. (Personally, we perceive the first as the solitary process of deter-
mining what is true, and the second as the social process of conveying to others
the results of this determination.) But from a computational point of view, if
one discards efficiency, proving would just be a synonym of deciding, whose
only raison d'etre would be variation of discourse. Indeed, if the time needed for
"critically receiving" a proof were not substantially less than that of deciding,
one might as well run a deciding algorithm rather than receiving a proof from
someone else.

But realizing that proving should be efficient (for being a meaningful and
distinct notion), and finding the "right" notion of an efficient proof are two very
different things; particularly because what we perceive as "right" changes over
time.

2.2 Complexity, Polynomial Time and Classical Proofs

Intuitively, we expect that the complexity of —say— deciding primality grow
as a function of integer size. Indeed, underlying any notion of complexity lies

4 Indeed, it is immediately seen that if a language L possesses a verifying Turing
machine V, then it also possesses a deciding algorithm D, namely, the one that, on
input a string #, looks for a classical proof that x G L by examining, in lexicographic
order, all strings, stopping only when one is found. Conversely, the history of the
accepting computation of a deciding algorithm D on input x is itself a string that is
"easy to verify."

219

the question of how inputs are represented. Complexity assumes an infinity of
inputs and that these inputs are coded in binary.5

A bit more formally, let f (n) be a non decreasing function from Z+ to Z+,

and let L be an infinite language. We say that L's complexity is O (f (n)) if there

is a (deciding) Turing machine M such that, for (any n and) any n-bit input

belonging to L, halts outputting YES within f (n) steps, and rejects otherwise.

(By a step of a Turing machine we mean any of its elementary operations —such
as a state transition, reading or writing a symbol, etc.) By saying that a language

is polynomial-time (decidable) we mean that it has complexity O(nc) for some

constant c.

Sometimes, a different definition of input length is used. For instance, it is

traditional -as well as natural- to assume that a graph of n nodes has input
length n. "Correctly", however, this length should be O(nlogn): such a graph

has at most n2 edges, and logm bits suffice to give distinct names to m objects.

It should be noticed, however, that this "slight" difference in input length does

not affect which graph languages are recognizable in polynomial time. (Indeed,
a large part of the success of the notion of polynomial time is due to robustness

properties such this.)

Given the nature of the most familiar examples, one may wonder whether

the complexity point of view applies to "all proofs" and "all theorems" or to just

a subset of them of a more-or-less combinatorial flavor. For instance: What is

the complexity of Fermat's last theorem? What is the complexity of establishing

whether a given multivariate polynomial of degree 4, P(#ι,..., xn), has real roots?

What is the length of such inputs?

To address such questions, one should realize that complexity is a very

language-dependent notion: it all depends on how one groups together infinitely

many strings, rather than on their combinatorial nature. (In particular, the com-

plexities of a language and a sub-language can be vastly different.)

In fact, though addressing a combinatorial problem, . speaking of the com-

plexity of establishing whether a single specific graph is Hamiltonian is not mean-

ingful in a complexity framework: a trillion steps performed on a given graph G

is a "constant number" of operations. (It is like speaking of the asymptotic be-
haviour of a function / whose only known value is that at point 3.) By contrast,

speaking about the complexity of deciding Hamiltonicity is meaningful: one con-

siders the infinite language consisting of all Hamiltonian graphs and then see

how the computational effort of deciding membership in it grows with input

size.

Similarly, the question of the complexity of Fermat's last theorem (or that

5 Decision algorithms would appear "much faster" if inputs were coded in unary; while

adopting any base greater than 2 would result in a constant savings in input length

(which, for instance, would not affect the notion of polynomial time).

220

of a given polynomial P having real roots) is not well defined. The problem is

not that Fermat's last theorem is not of a combinatorial nature. Nor does the

problem consist of how one can measure the input size of Fermat's last theorem.

(Its statement, in fact, though making assertions about infinitely many integers,

has a finite description. Thus, choosing a suitable encoding scheme yields a clear

input size: the length of the string encoding the statement.) The problem is that,

in order to discuss complexity, one needs to be dealing with an infinite language.

But this does not mean that the question of complexity does not apply to a

classical setting! It only means that we must re-phrase the question in a proper

manner.

While in complexity theory one is usually conscious of selecting "arbitrarily"

which languages to investigate, in a classical setting one "ordinarily" assumes

to be dealing with a single set of axioms (and inference rules) —the "natural"

ones— and thus with a single language: that of all statements derivable in such

a fixed system.

One can thus both formally and meaningfully consider "all theorems" as a

language. All that is needed is an encoding for statements and proofs, so that a

(verifying) Turing machine can be specified. This language is obviously undecid-

able, but complexity applies quite naturally if one considers proper sublanguages

of it by bounding proof length: for instance, the language of all statements whose

proof is at most n2 bit-long (where n is the statement length), which we may

conjecture to be not polynomial-time decidable.

As we shall see, for any possible language L, CS Proofs succeed in proving

membership in L by means of strings that are very short, very easy to verify, and

as easy to produce as possible. In particular, therefore, CS Proofs apply to the

language of "all theorems," by replacing any classical proof by a much shorter

string.

NP, IP, PCP, and Zero-Knowledge Arguments

A survey paper discussing in greater detail these prior complexity-theoretic

approaches to the notion of a proof would be very valuable. But, as already said,

ours is not such a paper: all we want is to put forward and discuss a new notion

of a proof. We thus recall these prior notions only to the extent necessary to

illustrate and provide context for our new one.

Non-deterministic Polynomial time. The first attempt to capture what

is efficiently provable is Cook's [12], and independently Levin's [25], beautiful

notion of ΛfP. Informally, a language L belongs to the class λfP if every string

x in it possesses a short (i.e., polynomially-long in the length of x) derivation,

221

and its verifying algorithm is efficient (i.e., runs in polynomial time). Thus, λfP-

proofs are a special type of classical proofs.

Interactive proofs. A non-classical notion of a proof, that of an interactive

proof, was subsequently put forward by Goldwasser, Micali, and Rackoff [18]

and independently by Babai and Moran [4]. According to their point of view,

proofs are processes rather than syntactic objects. Because the notion of a CS

proof "mirrors" to a large extent that of an interactive proof, it will be useful

to recall the latter a bit. Informally, an interactive proof is a game between two

algorithms: a Prover P, who can perform an arbitrary amount of computation,

and a Verifier V, who is bound to computing in polynomial time. Given the same

statement as an input, the two algorithms compute interactively (i.e., they send

each other messages during the proving process), and probabilistically (i.e., they

can toss coins as part of their strategies).

A Prover-Verifier pair computing as above, (P, V), is said to be an interactive

proof-system for a language L if, on input a string x, the following two conditions

hold:

1. (Completeness): If x £ L, then P always convinces V (i.e., V outputs YES

at the end of any such computation); and,

2. (Soundness): If x £ L, then, for any false prover P'', the probability of

P1 convincing V (solely computed over the coin tosses made by the two

algorithms on input x) is negligible.

It is easily seen that the class of languages having an interactive proof-system,

2/P, contains ΛΛP, but it may contain much more. (Indeed, thanks to the works

of Fortnow, Karloff, Lund, and Nisan [26] and Shamir [37] we now know that

IP - P SPACE.}

Probabilistically checkable proofs. We shall talk about PCP [3] [13] in

some detail when constructing CS proofs. For now, let us just recall the no-

tion of a probabilistically checkable proof at a very high level. Quite succinctly,

Babai Fortnow, Levin and Szegedy [3] and Feige, Goldwasser, Lovasz, Safra and

Szegedy [13] have, independently, provided explicit algorithms transforming an

λίP- wit ness, σ, into a new proof (i.e., string), τ, which is polynomially longer,

but whose correctness can be detected in probabilistic poly-logarithmic time,

by properly sampling it in a few locations rather than by reading it in its en-

tirety. Probabilistically checkable proofs can thus be viewed as a special type of

syntactic proofs.

222

Zero-knowledge arguments. As introduced by Brassard, Chaum, and Cre-

peau's [11], zero-knowledge argument are special proof systems. ' These systems

do not make a larger class of theorems efficiently provable. Rather, in the spirit

of Goldwasser, Micali, and Rackoff's prior notion of a zero-knowledge proof [IS],

they aim at minimizing the "amount of knowledge" conveyed in a "proof" of

membership in an λίP language.
Informally, a zero-knowledge argument is an interactive protocol enabling a

Prover to convince a Verifier that an input belongs to an ΛΛP-language, but

without conveying any more knowledge than the mere fact that a given witness

of such a membership exists. (In particular, no Verifier may learn such a witness

in its entirety, nor whether w has more O's than Γs, etc.)
In a zero-knowledge argument, both Prover and Verifier are polynomial-time

machines. Further, when they interact on input a string x belonging to an ΛfP-
language L, it is assumed that the Prover also has (on a special tape inaccessible

to the Verifier) an λίP-witness, w, of x £ L.
At an intuitive level, the Prover sends the Verifier what may be conceptu-

alized as "special encodings" of w,6 and then answers some special questions of
the Verifier about such encodings. The properties enjoyed by such an interaction

are the following: (1) the Verifier, no matter how long he might compute, cannot

learn anything about the specific witness w possessed by the Prover, and (2) if

the Prover properly answers the Verifier's questions, the Verifier is guaranteed

that, unless the Prover succeeds in breaking the special encryption scheme, the
Prover must possess a witness of x £ L.

In sum, therefore, zero-knowledge arguments have two distinct aspects, cor-

rectness and zero-knowledgeness, and privilege the second rather than the first.

In fact, a zero-knowledge argument offers an unconditional guarantee of zero-
knowledgeness but only a conditional guarantee of correctness. (I.e., if the Prover

could break the special scheme, he could cheat the Verifier into believing false
statements about λίP-language membership. But, knowing that the Prover is

bound to polynomial-time computation, the Verifier also knows that he will not

succeed in such a breakage, but with negligible probability.)

It should be noticed that these guarantees are the exact reverse of those of-

fered by the type of zero-knowledge proofs used earlier by Goldreich, Micali, and
Wigderson to prove that any AfTManguage has a zero-knowledge proof-system

6 Each special encoding scheme, E, is actually sent by the Verifier to the Prover, is

probabilistic, and enjoys the following two properties: (α) each ciphertext is equally

likely to encode any cleartext (i.e., for any ciphertext C and any cleartext x, there is

the same number of random strings r —of a given length— such that C = E(x, r));

however, (6) without succeeding in breaking the scheme, he who has generated a

ciphertext C by encoding a cleartext x with a random string r, cannot decode C in

any other way (i.e., he cannot find a different cleartext x' and a random string r1

such that E(x',r') = C).

223

[20]. In fact, their zero-knowledge proofs offer an unconditional guarantee of cor-
rectness (i.e., every cheating prover, no matter how much computational power

it may have, has but a negligible probability of convincing its verifier that a false

statement is true), but only a conditional guarantee of zero-knowledgeness, that

is, one holding for any Verifier that is bound to polynomial-time computation.7

2.3 New Goals For Efficient Proofs

A General Objective. A common objective of all prior notions of an effi-

cient proof is guaranteeing efficient verification. We too share this objective, but

provide a different interpretation of what "efficient verification" should mean.

In addition, believing that a proof system should specify both the process of
proving and that of verifying, we demand that proving too be efficient.

At the highest and informal level, our objective is

finding the right relationship between deciding, efficiently proving, and efficiently
verifying that a statement is true.

As it is often the case, realizing and stating the objective carries in itself the

means to reach it. It implicitly states that the right notion of proving should
arise from that of deciding. As we have already said, we view deciding as the

(solitary) process of convincing ourselves of what is true, and proving as the
(social) process of convincing others of what is true, and we believe that one

should be able to convince himself for being able to convince others.
Accordingly, the overall usefulness (i.e., the efficiency) of the proof of a theo-

rem arises only when contrasted with the effort necessary for deciding it. In other

7 That is, given much longer time to compute, the Verifier could reconstruct any

piece of hidden knowledge, and thus a proof of the given statement in its entirety.

Zero-knowledge proofs of this type, as introduced by [18], are called computational

zero-knowledge proofs. In the same paper [18], also other types of zero-knowledge

proofs (called perfect and statistical zero-knowledge proofs) have been introduced

and explicitly constructed. These latter zero-knowledge proofs offer an unconditional

guarantee of both correctness and zero-knowledgeness. Though this would appear to

be a preferable notion, only a few notable languages are known to possess zero-

knowledge proofs of this type (e.g., graph isomorphism and graph non-isomorphism

[20]). Fortnow [15] has actually shown that if a zero-knowledge proof of this type

were found for a single ΛΛP-complete problem, then the polynomial-time hierarchy

would collapse at the second level. Some researchers have interpreted this result as

saying that this type of zero-knowledge proof is unlikely to be powerful enough so

as to encompass all λίP languages (i.e., that, most likely, one has to live with some

form of conditional guarantee if one wishes to have a general enough notion of zero-

knowledge proofs). By contrast, based on a very weak cryptographic assumption,

[20] have shown that any language in λfP possesses a computational zero-knowledge

proof system.

224

words, our main and informal goal consists of arguing that the right notions of
efficiently proving and efficiently verifying are not definable in "absolute terms"

(as in some sense it has been done so far to express "efficient verifiability"), but

must be expressed "relative to" that of deciding.

Three Main Goals. We articulate the above vast and vague objective into

three slightly smaller and more concrete goals for an efficient proof-system.

1. Efficient Verifiability. We should construct proof-systems so that, for all

theorems, the complexity of verification is poly-logarithmic in the complexity
of deciding.

2. Efficient Provability. We should construct proof-systems so that the prover's

computational complexity is polynomially close to that of deciding.

3. Universality: We should construct proof-systems capable of efficiently prov-
ing membership in any semi-recursive language.

As we shall point out in the sequel, our CS proofs also achieve additional goals,

but we do not consider them essential to the notion of an efficient proof. Let
us now explain the novelty of our goals by contrasting them with what was
achievable by some prior proof systems.

Efficient Verifiability

Relative Efficiency. As in previous proof-systems, we too require that veri-

fication be "efficient." Differently from those previous notions, however, we do
not express this efficiency requirement in absolute terms. Rather, in accordance

to our premise, we regard a proof-system as making verification of a given state-

ment efficient if it enables the computational effort of the verifier to be much

easier than that he would have to invest, without any help from a prover, in

order to establish the verity of the same statement. (I.e., rather than requiring
that verifying be easy —e.g., polynomial-time, like in λίP or IP,— we require

that it be easier than deciding.)

Having settled on a relative measure, we now face the problem of quantify-
ing what computational savings are deemed to make verification efficient. We

choose to consider verification efficient if its complexity is polylogarithmic in the
complexity of deciding. Though somewhat arbitrary, our choice stems from two

simple reasons: "logarithmic" because we wish that the advantage of verification

over decision be substantial (whenever the decision time is substantial!), and

"poly" because we wish such an advantage to be reasonably independent from
any specific computational model.

225

Ubiquitous Efficiency. There is an additional, novel, and crucial aspect to

our goal of efficient verifiability; namely, that such convenience should arise for
all theorems, and not for just some rare ones. Let us explain.

According to prior notions, one might consider expressing that verification
is easier than decision by saying that P φ λίP. The latter statement, how-
ever, might only entail the existence of a super-polynomial gap between decision

and verification for some rare inputs, such as certain instances of satisfiability.
(Indeed, satisfiability appears to be "easy on most inputs.")

According to our present point of view, instead, a proof-system does not make

verification sufficiently efficient unless it makes it polylogarithmically easier than
deciding for all theorems. (Of course, however, for certain trivial statements,

"polylogarithmically easier" may be no savings at all in absolute terms! Indeed,
for some polynomials Q and some sufficiently small values v, Q(logv) may be

greater than v.)

Efficient Provability

Implicitly or explicitly, proofs involve two agents, a Prover and a Verifier. We
thus believe that the right notion of a proof should require efficiency for both
agents and that the efficiency of a prover should not be measured in absolute

terms, but relatively to the complexity of the decision problem at hand.

To us, measuring prover efficiency relative to decision complexity is a quite

natural choice. Indeed, based on our intuition that the complexity of convincing

someone else cannot be lesser than that of convincing ourselves (and based on
our view that deciding is the process of convincing ourselves), we believe that

the complexity of proving cannot be (at least much) lower than that of deciding;

while it could be much greater. We thus regard as necessary properties of an

efficient proof-system not only that (1) the Prover succeeds in convincing the

Verifier whenever the theorem at hand is true (the older completeness condition
of an interactive proof-system), but also that (2) the amount of computation

needed by the Prover to convince the Verifier is reasonably close to that needed

to decide that the given theorem is true. We refer to the simultaneous holding

of these two properties as feasible completeness.

Feasible completeness a novel requirement for proof-systems, but we may
wonder whether some prior proof-systems "happened" to enjoy it anyway. The
answer is possibly no. Consider, for instance a ΛΛP-language L (preferably not

ΛΛP-complete8) decidable by an algorithm D in, say, nlosn time. Then, in the

8 Above, we assume that L is not ΛΛP-complete to avoid raising two issues at once.

Indeed, due to our current complexity measures, ΛΛP-proving membership in a λfP-

complete language appears feasible. In fact, because of the self-reducibility, if L is

ΛΛP-complete and decidable in πlog n time, then a λfP-witness of x £ L is findable

226

AfP mechanism, proving that a given string x belongs to L entails finding a

polynomially-long and polynomial-time inspectable witness wx. But the com-

plexity necessary to find such an insightful string may vastly exceed that of

running algorithm D on input x for nlosn steps! Indeed, it may be as high as

O(2n). In other words, while a few months of hard work may suffice for proving

to ourselves (i.e., for deciding) that a given mathematical statement is true, it
is conceivable that a life time may not be enough for finding an explanation

followable by a verifier with a limited attention span (e.g., a child).

Efficient provability might also not hold for the XT proof mechanism. Indeed,

often the best way to prove membership in an ZP-language consists of invok-
ing the mentioned and general IP — PSPACE protocol, which is extremely

wasteful of prover resources.

Realizing the importance of feasible completeness in a proof-system allows
us to raise a variety of intriguing questions about ΛfP and XP.g But our point

is not determining which proof-systems happen to enjoy feasible completeness.

Our point is that feasible completeness is a must for every "sufficiently right"

proof-system.

Universality

The proof-systems discussed in Subsection 2.1.3 have only a limited "range

of action." For instance, an interactive proof-system (P, V) is defined only with

respect to proving membership in a specific language L. Different languages

have therefore had different interactive proof-systems, or none. Indeed, even

considering the classes of all languages having a proof-system of a given type,

among those discussed in that subsection, one obtains sets of languages (e.g.,

ΛΛP, IP, etc.) quite small with respect to the set of all recursive languages.

In contrast with those proof-systems, we consider universality (i.e., the ca-

pability of acting on the entire range of recursive languages) to be a necessary

property of every "sufficiently right" proof-system. By this we do not just mean

in poly(n) nl°s n time. However, as we shall see in subsection 6.5, AίP may not enjoy

feasible completeness even when one focuses solely on ΛΛP-complete languages.
9 For instance, in an intuitive language,

Ql: What is the computational complexity required from anyXP-proυer of Unsatisfia-

bility?

Q2: What is the complexity required from any λfP-prover for, say, Graph Isomorphism?

Q3: Are there ΛfP'-languages L, such that proving membership in L may require much

less computation from an XP-prover than from an ΛfP-prover?

(I.e., can giving a Prover "more freedom" save him much work?) In particular,

Q3f: What is the computational complexity required from any XP-prover of Satisfiability?

227

that every recursive language should admit a proof-system of the "right" type.
We actually mean that a "right" proof-system should be able to prove member-
ship in any recursive language. That is, for any language L and any member x
of L, on input x and a suitable description of L, a right proof-system should be
able to prove, efficiently, that x belongs to L.

As we shall see, we consider a deciding algorithm for L to be a suitable
description of L (and one that immediately allows us to assess the efficient
provability and efficient verifiability of a proof system).

3 Computationally-Sound Proofs

In this section we put forward the notion of a CS proof to approximate in a
reasonable manner the goals set forth in the previous section. We actually present
three main types of CS proof-systems, according to the type of randomness
source they use. All types of CS proofs, however, share the same paradigm.

A new paradigm. Similarly to XV', a CS proof-system consists of a pair of
algorithms: a Prover and a Verifier. Differently from XT', however, in a CS proof-
system Prover and Verifier do not interact with one another. Rather, on input
the statement of a theorem, the Prover outputs a string, called a CS proof of
the theorem. The Verifier computes on inputs the statement of the theorem and
an alleged CS proof of it, and either accepts or rejects.

So far, therefore, CS proofs are syntactic objects, much in the spirit of classical
proofs. There is, however, a major difference between CS proofs and classical
ones. Classical proofs ensure that all provable statements are true. CS proofs
break with this tradition: they allow the existence of false proofs, but they ensure
that these are computationally impossible to find. That is,

False CS proofs may exist, but they will "never" be found.

Indeed, each CS proof specifies a security parameter, controlling the amount of
computing resources necessary to "cheat" in the proof, so that these resources
can be made arbitrarily high. Accordingly, CS proofs are meaningful only if we
believe that the Provers that have produced them, though more powerful than
their corresponding Verifiers, are themselves computationally bounded.10

From a practical point of view, this shift of paradigm is adequate. Indeed, as
long we restrict our attention to physically implementable Provers, no physical

10 Those familiar with the relevant literature may appreciate that the transition from
an interactive proof-system to a CS proof-system is analogous to the transition
from perfect zero-knowledge proof-system to a computational zero-knowledge proof-
system[18], which has proved to be a more flexible and powerful notion [20].

228

process in our Universe can perform 21'000 steps of computation, at least as
long the human race will exist. Thus, "practically speaking," all Provers are

computationally bounded.

From a theoretical point of view, the new paradigm (though contrary to a
long established tradition) is natural, in the sense that the new notion of a proof
allows us to answer in an appealingly simple way, many of the oldest questions in

complexity theory, and some new and fundamental ones as well. After all, "the

right notion is the one that allows us to prove the right theorem in the right

way!"

We also wish to clarify that the possibility of "proving a false statement"

does not arise during the proving process (as in the case of a zero-knowledge
argument11), Indeed, there is no interaction in a CS proof-system between Provers

and Verifiers. Thus, if one wished to look for a false CS proof, he could do so

"off-line", alone, and having all the elements that might be needed, or deemed

useful, for such a search. And given that false CS proofs are strings, if such
strings exist (and they do!), they can be surely found, but only if more than a
prescribed (and arbitrarily high) amount of computation is performed.

If this may provide adequate protection against a cheating prover that tries
to compute a good-looking CS proof, σ, of a false statement, what about such a

string σ that "already exists out there"? For instance, what if, while walking on

a beach we find a sand pattern that looks like the sequence of bits of such a σ?

Our answer is that though CS proofs are strings, and strings can be written

in a variety of ways (on the sand, in a DNA sequence, or a plain piece of paper),

we must consider the process that has generated them. For instance, in the above

hypothetical example, the grains of sand have been arranged in such a σ-shape
by natural elements such as wind, waves, sun, etc. We can thus view planet Earth

as a computer, and Earth's age as its computing time, so that, in a final analysis,

such a σ has been found in a few billion years: an unlikely event if we have chosen

our parameters so that the age of the Universe is negligible with respect to the

time necessary to find a good-looking CS proof of a false statement.

In sum,

CS proof-systems are deliberately inconsistent,

but indistinguishable, from a practical point of view, from consistent systems.

Three types of CS proof-systems. A CS proof-system may be probabilis-
tic, because its Prover and Verifier share a common source of randomness. We

actually distinguish three types of CS proof-systems, according to the type of

11 Where the Prover may break an encoding scheme provided to him by the Verifier
only at the beginning of an individual proving process.

229

randomness source Prover P and Verifier V may share (roughly said, a random
oracle, a random string, and no randomness at all):

1. CS proof-systems with a random oracle. In this type of CS proofs, when

having a given statement as an input, both P and V have access to the same

random oracle. A bit more precisely (given that a random oracle can be
viewed as an infinite string of random bits), P and V have oracle access to a

random function / : Σk -» Σk, where k is a security parameter. Equivalently
said, therefore, P and V can access in a single step any bit of a long random

string, that is, one having length exponential in the security parameter k.

2. CS proof-systems with a random string. Here P and V have access to a short
random string, that is, one having length polynomial in a security parameter

t.
3. Deterministic CS proof-systems. In such systems P and V do not share any

source of randomness.

The order of presentation of these three types of CS proof-systems is deter-

mined by the strength of the assumptions needed for their explicit construction.

Indeed, we show how to construct explicitly CS proof-systems of the first type

without relying on any additional assumption, CS proof-systems of the second
type based on a new (but to us reasonable) complexity assumption, and CS

proof-systems of the third type based a very strong complexity assumption.

All three types of CS proof-systems are non-interactive, in the sense that,

to convince the verifier or the verity of a given statement, the Prover just sends

him a single message (the CS proof), without any need to exchange messages
back and forth (not even once).

As the reader may notice, however, it is possible to define interactive CS

proof-systems which can actually be constructed more simply (in particular,

their construction can be immediately obtained from that of subsection 3.1.5.)

and under more traditional complexity assumptions (in particular, the existence
of collision-free hash functions). We refrain from defining such proof-systems

because we wish to "contain" this already long paper and because non-interactive

CS proof-systems are more interesting and powerful. For instance, CS proofs

with a random string and deterministic CS proofs yield some results on checking

that are not possible to obtain with interactive CS proofs (or CS proofs with a
random oracle for that matter).

3.1 CS Proofs With A Random Oracle

Significance of the model. As announced above, in a CS proof-system with a

random oracle Prover and Verifier are given oracle access to a random function

from {0,1}^ to {0,1}*, where k is an integer representing a security parameter
(controlling the "trustworthiness" of the system).

230

Though somewhat "impractical", CS proofs of this type present a main ad-

vantage:

Even if λίP = P, they guarantee that, given a sufficient amount of ran-

domness in the proper form, fundamental intuitions like verification being

poly-logarithmically easier than decision are indeed true.

Let us explain. He who is concerned about truth, but not about time, does not

need proofs and provers: he may be equally happy to run a decision algorithm for

establishing whether a given statement holds. Proofs are in fact mechanisms that

aim at quickly and "critically" transfer truths that have been hard to obtain.

Thus,

Proofs cannot properly exist as a separate notion (i.e., separate from that of

decision) unless they succeed in making verification of truth MUCH easier

than deciding truth.

The author's inclination to believe that P φ J\fP is only based on (1) his α

priori certainty that proofs are a meaningful and separate notion, and (2) his

inclination to believe that AfP is a reasonable approximation to the notion of

a proof. But if it turned out that P = J\fP, to us this would only mean that

λίP did not provide an adequate approximation. Indeed, fundamental intuitions

such as proofs being an independently meaningful notion could not be shaken

by a formal result such as P = λίP. It is thus important to establish meaningful

models in which we can show that proofs do exist as an independent notion.

CS proofs with a random oracle provide us with such a model. Better yet,

they actually achieve, in their setting, all the goals set forward in subsection 2.2.

It is thus legitimate to ask:

Where does their power come from ?

That is, how can a random function help in making proofs an independently

meaningful notion? The intuitive answer is that a random function

/ : Σk -> Σh

essentially consists of an exponentially-long (in k) string. Thus, having / avail-

able as an oracle rather than as a string allows one to have polynomial-time

(actually, constant-time) rather than exponential-time access to its bits. And it

is precisely this exponential speed-up that will be converted, thanks to our spe-

cific construction, to the much more interesting exponential gap between decision

and verification.

231

Preliminary Definitions

Oracles and oracle-calling algorithms. By an oracle, we mean a function

/ : Σa ->• Σb, for some positive integers α and 6. When the domain Σa and the

codomain Σb are understood, by a random oracle we mean a function randomly

selected among those mapping Σa into Σb.

Let A be an algorithm capable of making oracle calls. If A makes calls to a

single oracle, we emphasize this fact by writing A(.); similarly, if A makes calls

to a pair of oracles, we may emphasize this fact by writing A(v j ; etc. If / is

an oracle, we write Af to denote the algorithm obtained by having algorithm

A(.j make its calls to oracle /; similarly, we write A f l } f 2 , if (/1? /2) is the pair of

oracles to which Λ(v) makes its calls; and so on.

For complexity purposes, in a computation of A(. Γ), the process of writing

down a query σ to one of its oracles, /, and receiving f (σ) in response is counted

as a single step. (No result of this paper would change in an essential way if this

call would "cost" poly(a,b) steps whenever / : {0, l}α -» {0,1}6.)

An algorithm that, in any possible execution, makes exactly N calls to each

of its oracles will be refereed to as a N-call algorithm.

A special language. Let C denote the language consisting of the triplets

q = (M,£,t f) , where M is the description (in some standard encoding) of a

Turing machine M, x is a binary input to M such that M(x) = YES, and t is

the binary representation of an upperbound to the number of steps M makes on

input x.

Definition of a CS proof-system with a random oracle. Let (P, V) be

a pair of Turing machines capable of oracle calls, the second of which runs in

polynomial-time. At the start of an execution of (P, V), both machines have two

common inputs, a binary input q (an alleged member of £) and a unary security

parameter k, and access to a common oracle /. The execution consists of running

P on q and k with access to /, so as to produce a binary output C, and then

running V on q, k, and C with access to /.

We say that (P, V) is a CS proof-system with a random oracle if there exist

a sequence of 6 positive constants, c i , . . . , CQ (refereed to as the fundamental

constants of the system), such that the following two properties are satisfied:

I'. Feasible Completeness. V integers n > 1, V n-bit input q = (M,x,t) G £,

V unary integers k, and V oracle / : Σk°l —> Σk 1,

(i) Pf halts within (nkt)°2 computational steps, and outputs a binary string

C - P/(q, k) whose length is < (nk\ogt)c*, and

(it)

232

2'. Computational Soundness. V k > n°4 , Vq g £, and V deterministic (cheating)

algorithm P' making < 2C5/e oracle calls, for a random oracle

K : Σk°l -> Σkcι ,

Pro6*(Vfe(q, fc, P^(q, fc)) = Y£S) < 2~C6/C .

If (P, I/) is a CS proof-system with a random oracle, the process of running P

on an input (M,x,t) with a security parameter k and a random oracle Tl will

be refereed to as a random-oracle CS proof, and the output of P will be refereed

to as a random-oracle CS witness or a random-oracle CS certificate (of security

k) of M(x) = YES. If it is clear from the context that we are dealing with CS

proofs with a random oracle, we may actually simplify our language by dropping

the qualifications "with a random oracle" and "random-oracle."

Discussion

Deterministic Cheating. In the above definition of a CS proof-system with a

random oracle, we have considered cheating provers P' to be deterministic. This

choice simplifies the notational burden of later sections a bit, but does not cause

any loss of generality. Indeed, since we are not concerned about the size of the

description of P', nor about its running time (except for the number of oracle

calls it may make) , we could easily "wire-in" any "lucky" sequence of coin tosses

if probabilism might help cheating.

Verified Cheating. Without loss of generality, the cheating provers of com-

putational soundness always halt: either outputting nothing, or outputting ver-

ified certificates. That is, for all oracles /, if P f (q ' , k) — C' φ ε, then, prior

to outputting C', V has appropriately called oracle / so as to verify that

Choosing the security parameter. Informally, the security parameter A: con-

trols the probability of something going wrong, and CS proofs become meaning-

ful only when k is chosen large enough. Now, what should our considerations be

when choosing k?

In the physical world as we know it, no one can perform 2300 computational

steps, and any probability less than 2~300 is undistinguishable from 0. This

suggests choosing our security parameter so that, by making less that 2300 oracle

calls, one cannot cheat with probability greater than 2~300.

The above choice of k may be particularly adequate when dealing with a

single theorem statement, but if one considers all the false statements which

are 300-bit long, then the probability that a cheating prover, in a relatively few

oracle calls, may construct a good-looking CS certificate of correctness for at

233

least one of them may be constant, because there may be up to 2300 of such false
statements. It may thus be preferable to ensure that, with probability > 1 —2~300,

no false statement, no matter how long, has a feasibly-found CS certificate of

correctness. This is easily accomplished by choosing k as a (fixed) moderately-

growing function of n, the input length. Indeed, we recommend in our definition

that k should grow polynomially in the input length: k > n°4.
Finally, letting k grow with n maximizes the meaningfulness of a CS proof-

system (P, V) in a theoretical sense. Loosely speaking, when "CS-proving" that

(M, x,i) £ £, we should choose k so that the effort necessary for cheating, even

with a miniscule probability of success, is much larger than the decision time,

t. In fact, a Verifier who is willing to check a CS witness for "M(x) = YES
within t steps," is implicitly acknowledging that in the world there is already

someone —namely, the honest P himself— who can perform poly(k,t) steps of

computation.

In other words, after having argued that "feasible proving" and "efficient

verifying" should not be expressed in absolute terms, but relative to the com-
plexity of deciding, we now argue that the "hardness of cheating" should not be

expressed in absolute terms either. Rather, we should require that cheating is

"much harder than deciding." But, what values may be reasonably considered

to be much greater than t (and actually achieved by an explicit construction)?

Our answer is t°(l°^. In fact, such difficulty of cheating is easily enforceable
by choosing, as we do, & to grow polynomially in n. For instance, assume that one

chooses 04 > 2, thereby lowerbunding k by n2. Such a lowerbound guarantees

that the number of oracle calls necessary to a cheating prover to cheat with

probability of success 2Cβh must exceed 2Csn . Now, the fact that n > \ogt

(because the binary value t is part of the n-bit input q) implies ^C5l°βt.

In addition to the above reasons, choosing k to grow polynomially in n is

also essential to our proof of Theorem 1, where we show that an explicit pair

(P, V) is a CS proof-system with a random oracle.

Achieving our goals. Let us now see how our goals for the "right" notion of
a proof have been "hard-wired" in the definition of CS proofs.

1. Efficient Verifiability. Our first goal required that, for every theorem, verify-

ing should be poly logarithmically easier than deciding. This goal is approx-

imated by a CS proof-system (P, V) in the following sense.

Let L be any recursive language, x be any member of L, and D any deciding

algorithm for L. Then, the theorem x £ L can be verified by running D
on input x and verifying that D(x) — YES. Assume now that the latter

computation takes t steps. Then, by choosing a proper security parameter k

and running P on inputs (D,x,t,k) and access to a random oracle 7£, one

obtains a CS proof, σ, of x G L such that (α) σ's length is bounded by a fixed

234

polynomial in D, k, and logί, and (6) σ is accepted by Vπ running on input
(D, x, k). Therefore, being V polynomial-time, there is a fixed polynomial Q

such that V verifies σ within <3(|M|, |# |, logf, k) steps.

In sum, no matter what algorithm one specifies for deciding whether x £ L,

there is a corresponding CS proof of x 6 L which is verifiable in a time that

is polylogarithmic in the number of steps taken by that algorithm on input
x (and polynomial in all other parameters).

2. Efficient Provability. The second goal called for the complexity of proving

being poly normally closer to that of deciding. This property is immediately
guaranteed by the feasible-completeness of a CS proof-system. Feasible com-

pleteness in fact states that there exists a fixed polynomial <2(, , •) such
that, if an algorithm D decides in t steps that a string x belongs to a recur-

sive language L, then a CS prover can, on input q = (D,x,t) and security

parameter Ar, demonstrate that x £ L within Q(|q|,/M) steps.
3. Universality. Our third goal called for proof-systems capable of proving mem-

bership in all possible semi-recursive languages. In apparent contrast with
this requirement, a CS proof-system is defined to prove membership only in

the very special language C. But C is designed so as to encode membership

questions relative to any possible semi-recursive language. In fact, to each

semi-recursive language L corresponds a (deciding) Turing machine ML so

that x £ L if and only if ML, on input x, outputs YES in some number of
steps t. Thus, x £ L if (ML, x , t) E C, thus achieving the third goal.

The explicitness of t. There are two reasons for explicitly including in C the
number of steps, t, within which ML accepts x. First, our explicitly constructed

CS proof-systems while certifying that ML(X] — YES also certify within how
many steps ML outputs YES. Second, as we have already argued in this subsec-
tion, the value t —or, at least, an upperbound for it— must be known in order

to choose meaningfully the security parameter k.

An additional property. CS proofs also satisfy additional properties. In par-

ticular, like in a classical proof but unlike in an interactive proof, a Verifier who

has inspected a CS proof can easily convince someone else of the verity of its

corresponding statement. Indeed, being CS proofs strings checkable with a pub-
lically available oracle, all the Verifier has to do is to send someone else the same

string he has successfully verified. (We do not wish, however, to make this prop-

erty a requirement for any "sufficiently right" notion of a proof. Indeed, there

are important contexts —in particular, cryptographic ones— in which it may
be preferable or advantageous that a convinced verifier cannot convince anyone
else. Indeed, this is one of the main advantages of a zero-knowledge proof.)

235

Back to zero-knowledge arguments. We can now better contrast CS proofs

with Brassard, Chaum and Crepeau's zero-knowledge arguments. Taking aside

zero-knowledge considerations, there are the following differences:

- Zero-knowledge arguments are interactive.

(Incidentally, interactive versions of CS proofs can be also defined and con-

structed in an easy manner, though we omit doing so not to burden further

this paper.)

- Zero-knowledge arguments may not enjoy Efficient Verifiability.

(In fact, λfP may not satisfy Ubiquitous Efficiency, an important sub-requirement

of Efficient Verifiability.)

— Zero-knowledge arguments may not enjoy Efficient Provability.

(Indeed, on input a member x of a Λ/TManguage L, it is assumed that their

Provers possess, "for free", a ΛΛP-witness of x £ L. But, as we have already

pointed out in Subsection 2.2.2, the time necessary for a Prover to find such

a witness may vastly exceed that necessary to decide that x (E L.)

- Zero-knowledge arguments do not enjoy Universality.

(Indeed, they are only designed to work for ΛΛP-languages.)

(We wish to point out, however, that it might be possible to change the definition

and the design of zero-knowledge arguments so as to enjoy most, if not all,

of the properties they miss so far. Presumably, this could be accomplished by

using Kilian's construction, the ideas of our paper, and the non-interactive zero-

knowledge proofs of [7] and [6]. Investigating further this possibility is beyond

the scope of the present paper.)

A paradox. CS proofs are paradoxical in that a computationally-bounded

prover appears able to uprove more theorems" than an unbounded one. Indeed,

if we choose &'s value as a suitable function of the input length, then a properly-

bounded CS prover can demonstrate membership in any EXPTIME language

to a Verifier whose running time is upperbounded by a fixed polynomial of the

input length alone. By contrast, the unbounded prover of an interactive proof-

system can only prove membership in PSPACE languages to a polynomial-

time verifier, and it is widely believed that PSPACE is a proper subset of

EXPTIME.

A few years ago, this seemed puzzling to us.

Deconstructing our construction

Warning. The reader hoping to see a catchy, simple example of a CS Proof

system is about to be disappointed. Our construction of a CS proof-system is

hardly practical, and we do not know of any simpler ones. In my "defense" I can

236

only say that not everything needs to be practical (I trust that most abstract

mathematicians would agree), and that things important often become simpler

with time.

Because of the construction's complexity, we shall use the present subsec-

tion to provide an informal introduction to it, and to highlight its ideas. This

subsection, to be sure, is itself quite long (though hopefully less tedious than

the construction itself and its proof). This is purposely so. We in fact wish to

give the reader a chance to bypass subsections 3.1.5 and 3.1.7 altogether. We

encourage him, however, to glance at 3.1.6 (because it is possible to believe that

the construction works for the wrong reasons!).

Our construction is based on an earlier one of Kilian's [22], which is itself

based on Merkle's trees and probabilistically-checkable proofs. Let us thus start

by recalling these other notions.

Probabilistically-checkable and samplable proofs. Very recently, Babai

Fortnow, Levin and Szegedy [3] and Feige, Goldwasser, Lovasz, Safra and Szegedy

[13] have put forward, independently and with different aims,12 some related and

important ideas sharing a common technique: proof-samplability. A bit more pre-

cisely, they present an explicit algorithm transforming a J\fP-witness, σ, into a

new proof (i.e., string), τ, which is polynomially longer, but whose correctness

can be detected by properly sampling it in a few locations rather than by reading

it in its entirety.

Though the original constructions have been greatly improved (in particu-

lar, by Arora and Safra [2]), the simpler technique of [13] suffices for the goals

of this paper. Actually, for simplicity purposes, we shall rely on the following

"stripped-down" version of their technique, which we call samplable proofs.13

12 The authors of [3] focus on proofs of membership in λίP-languages, and show that
it is possible to construct Verifiers that work in time poly-logarithmic in the length
of the input. (Since in such a short time the Verifier could not even read the whole
input —and thus check that the proof he is going to sample actually relates to the
"right" theorem,— these authors have devised a special error-correcting format for
the input, and assume that it is presented in that format. An input that does not
come in that format can be put into it in polynomial-time.)

The authors of [13] use proof-samplability to establish the difficulty of finding
approximate solutions to important ΛΛP-complete problems. (With this goal in mind,
these other authors do not mind Verifiers working in time polynomial in the length
of the input, and do not use or need that inputs appear in any special format.)

13 Indeed, a probabilistically-checkable proof is a richer and more flexible notion, allow-
ing one to specify a wide range for the number of queries the Verifier may make, and
for the number of coins it may toss. Moreover, the careful reader may realize that,
even restricting one's attention to PC'P(log(π)o(1),/o0(n)o(1)), the PGP techniques
yield a reacher structure than samplable proofs; for instance, samplable proofs do

237

Definition. A sampling proof-system consists of an elementary interactive proof-
system, (SP, SV), where both the sampling prover SP and the sampling verifier

SV run in probabilistic polynomial time. On input x (a n-bit string belonging

to a given λίP-language L) and wx (a λίP-witness that indeed x £ L), SP
computes a (slightly longer) string w'x, a samplable proof that x € L. On input
strings x (candidate member of L) and random access to σ (candidate samplable
proof for x £ L), Verifier SV, after accessing only poly-log(ra) bit-locations of
σ, outputs either ACCEPT or REJECT with the following constraints. If x E L
and σ = SP(x,wx) for some correct ΛΛP-witness wx, then SV always outputs
ACCEPT. But if x £ L, then, Vσ, SV outputs REJECT with probability > 1/2.

The reader familiar with the recent advancements on probabilistically-checkable

proofs —in particular the beautiful papers of Arora and Safra [2], Arora, Lund,

Motwani, Sudan, and Szegedy [1], Sudan [39], Polishuck and Spielman [30],— will
realize that, for the sake of simplicity, we are sacrificing quite a bit of efficiency.14

Merkle's trees. Merkle trees [27] are based on binary trees and collision-free
hash functions.

- A binary tree is a tree in which every node has at most two children (in
which case, each one of them is said to be the sibling of the other).

- A collision-free hash function is, informally speaking, a polynomial-time com-
putable function H mapping binary strings of arbitrary length into reason-
ably short ones, so that it is computationally infeasible to find two different
strings x and y for which H(x) — H(y). Such pair of strings x and y is

called a collision (for H). (Popular candidate collision-free hash function is
the standardized secure hash function [36] and Rivest's MD4 [35].)

- A Merkle tree, informally speaking, is a binary tree whose nodes store (i.e.,

are associated to) values, some of which computed by means of a one-way

hash function H in a special manner. A leaf node can store any value, but
each internal node should store a value that is the one-way hash of the
concatenation of the values in its children. (I.e., if an internal node has a

0-child storing the value U and a 1-child storing a value V, then it stores

not guarantee that any particular bit of the samplable proof is accessible by the Ver-
ifier with positive probability —only the final (and proper) ACCEPT and REJECT
probabilities are guaranteed.

14 Indeed, Polishchuk and Spielman show that a ΛfP-witness with length n possesses a
probabilistically-checkable version that is only n1"l"ε-bit long for any constant ε > 0.
Nonetheless, we shall ignore polynomial improvements in the running time of sam-
pling provers and poly-log improvements in the running time of sampling verifiers.
Unlike for approximation theory, in fact, improvements in the efficiency of proof-
samplability will only affect the efficiency of CS proofs.

238

the value H(UV). If a child of an internal node does not exist, we assume

by convention that it stores a special value, denoted by EMPTY.)
If the one-way hash function produces Ar-bit outputs, then each internal node

of a Merkle tree, including the root, stores a k-bit value. Except for the root

value, each value stored in a node of a Merkle tree is said to be a 0-value, if

it is stored in a node that is the 0-child of its parent, a 1-value otherwise.

The crucial property of a Merkle tree is that, unless one succeeds in rinding

a collision for H, it is impossible to change any value in the tree without also

changing the root value. In particular, one cannot change the original values

stored in the leaves without changing also the root value.

This property allows a party A to "commit" to n values, V ί , . . . , V^ (for

simplicity assume n = 2α for some integer α), by means of a single Ar-bit value.

That is, A stores value K in the ith leaf of a full binary tree of depth rf, and

uses a collision-free hash function H to build a Merkle tree, thereby obtaining

a k-b'ιt value RV stored in the root. This value RV "implicitly defines" what
the n original values were. Assume that A gives RV', but not the original values,

to another party, B, at some point in time. Then, whenever, at a later point

in time, A wants to "prove" to B what the value of, say, Vi was, he may just

reveal all n original values to B, so that B can recompute the Merkle tree and

the verify that the newly computed root-value indeed equals RV.

More interestingly, A may "prove" what Vi was by revealing just d-\- I (i.e.,

logn + 1) values: Vi together with its authentication path, that is, the values

stored in the siblings of the nodes along the path from leaf i (included) to the

root (excluded), YI, . . . , Y<j. B verifies the received alleged leaf-value Vi and the

received alleged authentication path YI, . . . , Yd as follows. Letting ή , . . . , id be

the binary expansion of i, B sets V — X\ and computes the values X%,... , Xd

as follows: if ij = 0, she sets Xj+i — H(YjXj)', else, she sets Xj+i = H(XjYj).

Finally, B checks whether the computed Ar-bit value Xj equals RV.

Kilian's construction. In [22], Kilian presents a zero-knowledge argument

for AfP, (P, V), exhibiting a polylogarithmic amount of communication, where

prover P uses Merkle trees in order to provide to V "virtual access" to a sam-
plable proof.

In essence, disregarding zero-knowledge considerations, the polynomial-time

P, as in any zero-knowledge argument, possesses a polynomially-long witness,

w, proving that a given input x belongs to a given AfTManguage L. P thus

transforms w in a longer, but still polynomially-long in the length of #, samplable
proof u/. In order to obtain a logarithmic amount of computation, P cannot send

V witness u>, nor can he send him the longer samplable proofs/. Rather, P uses

a Merkle tree with a collision-free hash function H, producing Ar-bits outputs, as

above to compute a k-b'ιt string, RV, that commits him to u/, and then sends RV

239

to the verifier V. (For instance, disregarding further efficiency considerations, if
w' is n-bit long and , for simplicity, n is a power of 2, the ith bit of w' is made

to be the original value Vι in the above described construction, the Merkle tree

is a full binary tree of depth logn, and RV is the fc-bit value stored in its root.)

Verifier V runs as a subroutine a sampling verifier SV. When SV wishes

to consult the jth bit of w1, V asks P for it, and P responds by providing the

original value bj together with its authentication path. V then checks whether

bj's authentication path is correct relative to RV, and, if so, he is assured that

bj is the original value because he trusts that P, being polynomial-time, cannot

find a collision for H. V then feeds bj to SV. The computation proceeds this

way until V finds that an authentication path is incorrect, in which case it

halts and REJECTS, or until SV halts, in which case V REJECTS if SV does,
and ACCEPTS otherwise. Because SV "virtually" accesses a logarithmic (in

n) number of bits of w/, and because each such a virtual access is answered

by k logn bits of authentication path, the overall amount of communication is
logarithmic in n and thus in the length of x.

Notice that the above construction only shows how a Verifier can be given

virtual access to w1. Let us reiterate that, in order to obtain a communication

efficient zero-knowledge argument, Kilian's construction is actually more com-

plicated, but the additional zero-knowledge constraint is irrelevant for our goals.

Our first variant. Essentially this same construction (minus its zero-knowledge

addition) was independently found by the author [29], but our version included

a small, essentially conceptual, variant which is crucial to the present enterprise.

Indeed, while Kilian aimed at providing more efficient zero-knowledge arguments
for ΛΛP, we aimed (as we do now) at providing a more general and powerful

notion of a proof.

Our variant follows from the following two, simple but important, observa-

tions: (1) realizing that probabilistically-checkable proofs are more general than

traditionally claimed, and (2) considering proofs of membership in a given lan-

guage as individual problems. Let us explain.

1. The salient features of samplable proof-systems, although traditionally

claimed for λίP languages, actually hold in a more general context. Indeed,

the results of [13] and [3] (sometimes referred to as "poly-PCP") are mostly

seen as a "reduction of PCP to NP." To us this is a big understatement of

their results. (For instance, it would not allow us to prove Theorem 1 at all.)

In fact, a more careful reading of those papers yields the following

Theorem 0 ([13], [3]): There exists a deterministic algorithm SP(,), a

probabilistic algorithm SV(-, •) running in time polynomial in the first input

and poly logarithmic in the length of the second input, and two polynomials

240

t (- , •} and λ(, -) such that, for any polynomial-time relation R over 17* x Σ*

(i.e., R(x,y) — I may not imply any a priori bound for the length of y

relative to that of or),

(a) for any strings x and y such that R(x, y) holds, algorithm SP(x, y) halts

within t(\x\, \y\) steps outputting a string y1; and algorithm SV, on in-

puts x and Iy\ and random access to y1, flips at most λ(|x|, |t/|) coins and

accepts; and

(b) For any string x such that Vy R(x,y) — 0, and for any string σ, the

probability (computed over SV's coin tosses) that algorithm SV, on

inputs x and |σ| and random access to σ, flips at most λ(|x|, |τ/|) coins

and accepts is at most 1/2.

2. If the first observation consists of realizing that samplable proofs apply

"above AfP, the second observation consists of realizing that one can mean-

ingfully use cryptography, in particular the infeasibility of finding collisions

in a collision-free hash function, in order to keep honest a Prover capable of

proving membership in languages "above ΛfP".

Erroneously adopting a complexity-classes perspective, using cryptography

"against" such a Prover was not considered meaningful. Though re-evoking

in a convincing way past conceptual barriers is impossible, one could have

raised the following "objection":

because a collision-free hash function H is polynomial-time computable,

finding two strings x and y such that H(x) = H(y) is "within ΛΓP".

Thus, how can a Prover with more than Jv^P-power be kept honest by

the difficulty of finding collisions?15

This objection vanishes if one views a Prover, working on an input string x

and a given language L, not as an universal mechanism for proving member-

ship in L or in a given complexity class, but as an individual process/device,

endowed with an individual amount of computational resources, sufficient for
the individual input at hand.

Often, this amount of computational resources can be upperbounded in a

natural and absolute manner, no matter what the complexity of the language

L may be. For example, if x is n-bit long and L is P SPACE-complete, then

there is a positive constant c such that 2n steps certainly suffice to determine
whether x £ L.

Thus, no matter how high n may be, it is meaningful, for a Verifier that has

interacted with a Prover so as to become convinced that a specific n-bit input

x belongs to L, to believe that he has interacted with some agent capable

2n° steps of computation: indeed, ί2(2n°) could be L's complexity, and the
agent has convinced the Verifier to be capable of proving membership in L\

15 Notice that cryptography was used against the Prover of a zero-knowledge argument,

but that such a Prover was defined to be polynomial-time!

241

But it is also meaningful, for the same Verifier, after the same interaction,
to believe the same agent incapable of —say— 2(n°) steps of computation.

Thus, if, for some constant d, the complexity of collision-finding for a k-

bit-output hash function H is Ω(2k), and if k is greater than (nc) ' , it is

totally meaningful to believe that the same agent cannot find a Ar-bit collision

for H.

The above two remarks yield what may be called an interactive CS proof-system,

(*P,V) (a notion that, as already said, we refrain from formalizing for more

quickly getting to the notion we really care about). Namely, by adopting a proper

representation of "the input" and by using collision-free hash functions whose
output is suitably larger than the length of the input at hand, we can use Kilian's

construction to prove membership into any language, of any complexity class,

while satisfying both Efficient Verifiability and Efficient Provability.

In essence, on input q = (M, x,ί) £ £, ("P, V) works as follows. First, P runs

machine M on input x so as to generate, in t steps, the history (i.e., sequence
of instantaneous configurations), σ, of an accepting computation of M. Such an

history σ is then thought of as a proof that M(x) — YES. This proof will not

be insightful, and, because no restriction is put on M, can be arbitrarily long

relative to x.

Consider now the following relation R: R(x,σ) — 1 if and only if σ is the
(t-step) history of an accepting computation of M on input x. Then, R is

poly(\x\, |σ|) computable. Thus, due to Theorem 0, σ can be put in a probabilisti-

cally-checkable form r by algorithm SP (the prover of a sampling proof-system

(SP, SV)) within p o l y (\ x \ , t] steps. The so obtained τ is efficiently checkable by
algorithm SV with poly(\x\,\ogt) coin tosses.

But, while proving that "M(x) = YES in / steps," τ is again too long.

Thus, assuming that finding a collision in an Ar-bit-output collision-free hash

function requires 2k for some constant d, a collision-free hash function H whose

output has size (logί)2/d is chosen and, instead of handing τ to verifier V, P

gives him virtual access to τ using, as above, a Merkle tree with a hash function
H. This increases moderately (i.e., by a factor polynomial in logί) the amount

of computation of P, but makes cheating practically impossible for a malicious

Prover (conceived as an individual process/device endowed with an individual

amount of computational resources).

In sum, without any contradiction, we may keep honest a Prover working on
a given individual problem by rescaling and choosing a much harder individual

problem.

Our second variant. The CS proof-system with a random oracle presented

later on differs from the above outlined (P, V) in another way.

242

On the minor side, rather than an fc-bit-output collision-free hash function,

the new construction uses a random oracle-function mapping 2Ar-bit strings to

k-bit strings. Indeed, finding collisions for such a "function" is provably hard

(and can be quite precisely computed).

More importantly, we use our random oracle for obtaining a non-interactive

CS proof system. Notice, in fact, that the proof system (P, V) informally de-

scribed so far is interactive. Indeed, during the proving process, the sampling
verifier SV keeps on computing which bits in the samplable proof it wishes to

see; verifier V sends then these requests to prover P] and prover P responds with

the requested bits and their authentication paths.

Throughout the entire process, subroutine SV flips coins; more precisely, it

uses the same random tape RT fed to it by verifier V at the start of SV ?s compu-

tation. Because RT is genuinely random, when the input statement "M(x) =YES

in t steps" is false and verifier V interacts with a malicious prover P1 that does
not succeed in finding a collision for the random oracle, SV and thus V accept

with probability at most 1/2.

This probability can be made at most <2~k by repeating the whole process k

times, each time using an independently-selected random tape RT.

Now it can be seen that if k (and thus the number of bit positions virtually

accessed by the sampling verifier SV throughout its k runs) is sufficiently small

with respect to the length of the samplable proof (which we would like to be our
case in order to satisfy Efficient Verifiability), and if a malicious Prover knew in

advance which k random tapes the Verifier is going to feed SV, then he could

cheat with a much higher probability, even with probability 1. However, roughly

said, if the k tapes are selected α/ίerthe malicious Prover provides the root value

RV, then, roughly said, unless he succeeds in finding at least one collision for

the random oracle, his probability of cheating is still 2~k. This continues to be

true even if he receives the so selected k tapes in their entirety, rather than just

the bit-requests that the sampling verifier computes from them.

This suggests replacing interaction in the above proof-system as follows. On

input the statement "M(x) =YES in t steps", Prover P, as before, (a) computes

a classical proof of it by running M on input x and listing the sequence of

instantaneous configurations of the computation, (b) puts this classical proof in

samplable form, and (c) stores this samplable proof in the leaves of a suitable

binary tree and constructs a corresponding Merkle tree, using the random oracle

in lieu of a collision-free hash function, so as to compute a root value RV. At

this point, P uses the random oracle (actually, an independent random oracle

"extracted" from the given one) on input RV so as to compute k suitably-long

random tapes, RT\,... , ΛTfc. He then runs ("in his head") verifier V and its

subroutine SV as in the whole process described above, for k times, using RTi

as SV's random tape in the ith iteration. Therefore, he computes (in his head)

243

all the bit-locations of the samplable proof that 5V requests to access, and

outputs, as a CS proof with a random oracle for "M(x] =YES in t steps", the
value RV and the requested bits, each with its own authentication path relative

to RV. Such proof can be verified, in the obvious way, by using verifier V (with

subroutine 5V) and the same random oracle.

Consider now a malicious Prover trying to "CS-prove with a random oracle"

a false statement. Of course, he can choose a root value RV1 of his liking and

consult the oracle so as to see whether he can produce a good-looking CS proof

relative to RV1'. However, roughly said, because for each RV' (as long as he does
not succeed in finding a collision for the random oracle), his chance of finding

a good-looking proof is at most 2~k, we expect that he tries 2k times before

he succeeds. Thus, if k is large enough, and the running time of the malicious

prover is properly and meaningfully upperbounded, his chance of finding a CS

proof of a false statement is negligible.

Our variant is reminiscent of a step used by Fiat and Shamir [14]. Indeed,

they construct their digital signature scheme by starting with an interactive
two-party protocol, in which the first party sends a first message to the second
party and the second party responds with a random string, and then replacing

the random message of the second party by evaluating a one-way function on

the first party's message. (Prior to that, Manuel Blum actually suggested to the

author using a random oracle in order to replace interaction in a zero-knowledge
proof-system, though this suggestion never appeared in print.16)

A conceptual contribution. We believe the main contribution of this paper

to be a conceptual one. Namely (in addition to new but natural requirements

such as feasible completeness) our paper provides a complexity-based notion

of a proof which is universal (i.e., applicable to all recursive languages) and
deliberately inconsistent, but in a controllable (and meaningfully advantageous)
way.

It has been surprising to many (and to us in particular) why such a notion

had not been put forward much longer ago. Indeed, the main algorithmic ideas

of our construction (1) samplable proofs [13] [3], (2) Merkle's trees [27] and (3)

the Fiat-Shamir signature scheme [14], have been individually known for quite a

while. In addition, (1) and (2) had already been used together in [22]. (To these
ideas we just added the two simple remarks mentioned above17 and the use of

16 His suggestion was in fact the starting point of the non-interactive zero-knowledge

proofs of [7] and [6]. The suggestion did not enter the final version of these papers

because, for their specific task of zero-knowledge proofs of membership in λfP lan-

guages, we succeeded in replacing random oracles by short random strings, under

quite-standard complexity assumptions.
17 I.e., realizing that probabilistically-checkable proofs are more general than tradition-

244

random oracles.) Yet, their techniques have been successfully applied to many

contexts (approximability of jV'P-complete problems, zero-knowledge arguments

for λfP, etc.), but not to distilling a new notion of a proof.

Perhaps, we have been focusing on consistency and efficient verifiability for

so long that we became unable (the author first) to see any other issues and

desiderata in the notion of a proof.

Having presented all the ideas entering in our construction at an intuitive

level, let us now proceed more formally.

Our construction

The readers finding this (semi-) algorithmic rendition of the above ideas

somewhat superfluous has my full solidarity: I hate "programming" in all its

approximations. However, failure to provide an explicit algorithmic form would

have upset plenty of other readers. (One simply cannot please everyone!)

From one oracle to two oracles. According to our definition, in a CS proof-

system with a random oracle Prover and Verifier have oracle-access to a sin-

gle function /, where feasible completeness holds for any /, and computational

soundness for a random /.

It will be easier, however, to exemplify a CS proof-system with a random

oracle (P , V) , where P and V have oracle-access to two distinct functions: f\

and /2, where feasible completeness holds for any possible choice of f\ and /2,

while computational soundness when fι and /2 are random and independent.

Oracle-access to these two functions can be simulated by accessing a single,

properly selected, function /: to ensure that f\ and /2 are randomly and inde-

pendently selected when / is random, we arrange that whenever (i, x) φ (j, y)

no query made to / in order to compute f ι (x) coincides with a query made to

/ in order to compute f j (x) . For instance, if, for i = 1, 2, fc : {0, l}α' —)• {0, l}6i

(for some positive integer values α, and 6t , i = 1,2), letting / map {0, l}αι+α2

into {0,1}6l+ fe25 allows us to achieve our goal quite straightforwardly.

Length bounds. From Theorem 0 we distill the following

Definition: Let SP, SV, £ and λ be as in Theorem 0. Then, we shall refer

to (SP, SV) as a sampling proof system, and to £ and λ as its length bounds

(respectively, for the samplable proof produced by SP and the random tape
used by SV).

ally claimed, and considering proofs of membership in a given language as individual
problems.

245

Note that in our setting we deal with membership in the special language £,

consisting of triplets q = (M , x , t) such that M (x) accepts within t steps, and

we are interested in putting in samplable form a proof y consisting of the history

of the computation of M (x) , so that y's length is bounded by a fixed polynomial

in t. In fact, y is describable by a Turing-machine tableau of side t. Thus, if we

denote by n the binary length of q, then \x\-\- \M\ < n, t < 2n, and ΐ/'s length
is bounded by a fixed polynomial in n. Accordingly, in our setting, we can view

length bounds I and λ as polynomials in the single variable n.

Notation. We denote the empty word by ε, the set {0,1} by Σ1, the set of all

natural numbers by Λ/', the set of all positive integers by Z+, the concatenation

of two strings x and y by x\y (or more simply by xy), and the complement of a

bit 6 by 6.

We denote the length of a binary string α by |α|. If a is a n-bit string whose

ith bit is a,-, then for any integer j between 1 and n we let α[l -j] denote the

j-bit string a\ - aj-iotj. We let α[l -.;'] the string obtained by complementing

the last bit of α[l j], that is, α[l -j] = a\ - - aj-ιάj. Finally, if a is any binary
string and i a natural number, we let a[i -f 1 •] denote α after deleting its first

i bits (i.e., if α is a n-bit string, a[i +1 - -] = a[i+l ri\.)

If TV is a power of two, we let TN denote the complete binary tree with TV

leaves, labeled so that vε is the root, VQ and v\ are, respectively, the left and right

children of vε, and, Vα £ {0,1}* and Vz < log TV, υα0 and vaι are, respectively, the

left and right children of node va. Consequently, ^α[ι j] and v

a[ι J] are siblings
whenever 0 < |α| < log TV and 0 < j < \a\. The leaves of TN are thought to be

ordered "from left to right." Within the context of a tree 7/v, we denote by [j]

the log TV-bit binary representation of integer j (thus, [j] consists of the binary

representation of j with the right number of leading zeros). Accordingly, the jih

leaf of TN is node vy j .

In the following protocol we associate values to the nodes of TN so as to

obtain a Merkle tree (but constructed with a random-oracle function rather

than a collision-free hash function). In so doing, we shall consistently denote

the value of va as Ra. Thinking of each node of TN as having its own memory

location, we may also say that "Ra has been stored in node va"

Algorithms V and V.

Common inputs: q = (M, x, t), and k

respectively, a n-bit triplet in £ and a unary security parameter.

Common subroutines: SP and 5V,

246

respectively prover and verifier of a given samplable proof-system (5P, 5V)

with length bounds t and λ.

Common oracles: /x : Σ2k -> Σk and /2 : Σ*+n -> £*λ(Ό.

(Comment: When randomly selected, oracle f\ is used as a collision-free hash

function in Merkle tree Tn, and thus to enable P to commit to a samplable

proof of q £ C Oracle /2 is used to generate k random tapes for 5V.)

P's output: C, a CS certificate that q £ £.

V's additional input: C.

Algorithm P

PI. (Commit to a samplable proof of q £ C.)

Pl.l (Find a proof σ of x G £.)

Run machine M on input x so as to generate the history, σ, of the

< t-step accepting computation of M .

(Comment: σ can be considered a proof that x £ £)

PI. 2 (Put σ in a samplable form r.)

Run algorithm 5P on input q and σ so as to obtain a samplable proof,

r.

(Comment: Because |q| = |(M,x,ί) | = n, \τ\ < ί(n).)

PI. 3 (Commit to r by means of a Ar-bit va lue Ήε.)

Assume, for simplicity only, that \τ\/k = TV, where TV, an integral power

of 2. Then, sub-divide r into the concatenation of TV fc-bit strings, r —

TI ' ' TN , and compute a value Λε by associating to the vertices of tree

TN the following values. For 0 < j < TV, assign to the jth leaf, vy], the

/?-bit value

Λyj = TJ. (1)

Then, in a bottom-up fashion, assign to each interior node va of TN the

&-bit value

(2)

(Comment: Rε is the A?-bit value assigned to the root of TJv)

P2. (Build a CS certificate C of q E £.)

P2.1 (Start certificate.)

247

P2.2 (Choose k random tapes for SV.)

Call TAPE the random k\(n)-bιt string obtained by computing /2(q |Λe);
divide this string in k disjoint segments, each λ(n)-bit long, and call
TΛPEj the jth such segment.

P2.3 (Run SV k times with v i r tua l access to τ.)

For j = 1 , . . . , k, run SV with TΛPEj as the random tape, inputs q and
|r|, and virtual access to τ. Whenever SV wishes to access bit-location
i of r, perform the following instructions:

P2.3.1 (Find the index, 7, of the substring of r containing &;.)

Let / be the smallest positive integer p such that i < pk\

P2.3.2 (Add leaf / to the CS certificate.)

C f-C|%j; and

P2.3.3 (Add to the certificate the siblings of the path between leaf / and the

root of 7/v)

Set a = [/]; set vj - Ra[1..j] for j = 1,. . . , log TV;

set SIBLINGPATHj = (V l , . . . , vlogN)-, C <- C\SIBLINGPATHf.

(Example:

if / = 3 and TV = 8, then SIBLINGPATHj = (Λ0ιo, #00, ΛI).)

P3. (Output the certificate.)

Output C, a CS certificate of q £ C relative to root-value Rε.

Algorithm V

VI. (Read and delete the root of TN from the certificate, and compute k random

tapes for 57.)

Set ALLEGED - ROOT = C[l - k] and reset C *- C[k + 1 •]. Then com-
pute the *λ(π)-bit string TAPE = /2(q|^ε); divide TAPE into k non-
overlapping segments, each λ(n)-bit long, and call TAPEj the j'th such
segment.

72. (Run 57 fc times with virtual access to samplable proof r.)

For j = 1 , . . . , / ? run 57 with TAPEj as the random tape, input q, and
virtual access to samplable proof r. Whenever 57 wishes to access bit-

location i of r, do

72.1 (Find the index, /, of the segment of r containing 6t , and read the value of

leaf / from the certificate.)

Set / = [i/fc], a = [/], and Ra = C[l •*].

72.2 (Delete the value of leaf / from the certificate.)

C<-C[* + 1]

72.3 (Check whether the certificate contains the siblings of the path between leaf

/ and the root of 7/v, and remove them.)

248

For m = 1 to log TV, set Ra[ι .m] = Φ •*] and reset C <- C[fc + 1
Then, for m = log TV, . . . ,1, compute Λα[ι..m_ι] as follows:

l(Ra[l:j]\Ra[1..3\) i f ttm = l

(fl^.^lfl^..^) if ttm = 0

and check whether the computed value Rε equals the read value

ALLEGED - ROOT,
(Example: If TV — 8 and 7 = 3, then the verifier computes

= /ι(Λoιo| Roιι)>

RO = /ι(Λ0o|Λoι), and

Λc=/ι(Λo |Λι)

In this example, the values of r3, .Roio, #00, and Rι are part of the

certificate provided by the prover, and the values of .Ron, -Roi, -Ro, and

Rε are computed by the verifier.

VS. (Accept if and only if the sibling path have always been correct and if SV has

always accepted.)

If each check performed in Verification Step 2.3 has been passed, and if SV

has output YES in each of its k runs, then output YES. Else, output NO.

A flawed proof that the construction works. We prove that (P , V) is a CS

proof-system with random oracle in the next subsection. The proof of feasible

completeness is quite straightforward, but our proof of computational soundness

is not particularly compact nor intuitive, due to our insistence in proving even

intuitive properties. Though we might have exaggerated in details, our desire

to be meticulous derives from the fact that more intuitive and simple "proofs"

of computational correctness are actually flawed in fundamental ways. Indeed,

their being intuitive derives from the traditional use of Merkle trees, which is

quite different from ours.18 Based on previous use of Merkle trees, we may be

tempted of quickly "deriving" computational soundness from the following

Irrelevant (and informal) Fact: the value ,Rε, computed in Proving Step 1.3

and included in the certificate, in practice commits the Prover to at most one

possible string τ because, without making 2°(k) oracle calls, the chances of

finding two different strings r and r' that "Merkle-hash" to Rε is negligible.

18 Traditionally, one uses a Merkle tree to prevent someone else from cheating. (E.g.,
in the original application [27], a signer uses a Merkle tree to authenticate n values
of his choice, so as to make it infeasible for an impostor to authenticate different
values.) In our case, instead, the Prover uses a Merkle tree to prevent himself from
cheating, which complicates the proof a great deal.

249

The above statement is certainly true, and, once properly formalized, not hard

to prove. It is not, however, directly relevant to the scenario at hand. It applies,

instead, to settings where one party wishes to secretly commit to a string τ that

will be later revealed in its entirety.19

Unfortunately, the setting of Theorem 1 is quite different: prover P never

de-commits Rε by revealing the entire samplable proof τ. Indeed, because τ

may be too long, and because feasible completeness must be satisfied, P only

reveals relatively few bits of r: those requested by the samplable verifier in its
k simulated and virtual runs. It is thus irrelevant that a cheating prover cannot

feasibly find two strings τ and τ' that tree-hash to the same fc-bit value.

Equally irrelevant is the fact that successful cheating is highly improbable

if a malicious prover first selects a suitable value Λε, and then tries to answer

satisfactorily all bit-requests that are induced by Rε (via the k random tapes it

specifies).

Rather, we must prove that it is infeasible for a cheating prover, on input

q' £ C, to compute a fc-bit value R'£ (possibly obtained without Merkle-hashing
any string) together with, somehow, (α) bit-values (corresponding to requests

made by SV based on the tapes specified by Rε) that lead SV to accept at

every run, and (6) authentication paths corresponding to said bit-values that

correctly merge with Rε. This is what we are going to do next.

The construction works

Theorem 1: (P, V) is a CS proof-system with a random oracle.

Proof of Feasible Completeness.

It is immediately seen that subproperty (ii) (completeness) holds. That is, for

all q = (M, #, t) £ £, for all security parameter fc, and for all oracles f\ and /2,

the certificate output by P convinces V. Subproperty (i), that is the fact that

P performs only polynomially many (in n, k, and t) for producing a certificate,

follows as easily. Indeed, P invests t steps of computation for running M on input

#, a number of steps polynomial in q's length and t for obtaining the samplable

proof T, less than tlogt queries to the random oracle for generating the Merkle

tree, and much fewer steps for running V "in his head" and answering its queries.

(Also recall that each call to our /i and /2 can be simulated very efficiently

even if one were given access only to a single oracle / : Σ3h+n ->• J7*(λ(n)+1)). Q

19 For instance, a party A secretly chooses a string r, Merkle-hashes it into a fc-bit

string Rε, gives Rε to party B, and permits him to look at a few bits of τ proving

their values via authentication paths relative to Rε. After that, B is asked to bet on

whether or not A's secret string possesses a given property. After B's bet, A reveals

T, so that B can verify whether it Merkle-hashes to Rε.

250

Proof of Computational Soundness.

Initial notation. To simplify the proof of computational soundness, we assume,

without loss of generality, any of our oracle-calling algorithms does not query

any of its oracles twice about the same string σ.

In our proof we shall also consider oracle-calling algorithms that are proba-

bilistic. The sequence of coin tosses of a probabilistic oracle-calling algorithm A

shall be always denoted by C(A). Notice that the notion of a TV-call algorithm

include probabilistic ones.20

Probabilities of events occuring in the executions of an oracle-calling algo-

rithm A are computed over the random choice of a specified subset of its oracles

and, if A is probabilistic, over the choice of C(A). To indicate the probability of

an event E taken over "the possible choices of X, V , . . . " we write

ProbχtYt...(E).

Let Λ (.) be a TV-call algorithm querying its oracle about strings in a finite

set D, let R be another finite set, and let / : D —)• R be a function. Then, an

execution of A/ identifies an element of the Cartesian product RN that is, the

sequence T = TI, . . . , r/v, where rt is /'s answer to *4's iih query.

Viceversa, because A does not, within the same execution, query twice its

oracle about the same string, given an R-valued sequence T = TI, . . . , ΓΛΓ, we

can envisage executing A so that the ith query to the oracle is answered by r, .

The ensemble of executions so generated will be denoted by AT

It should be noticed that the set of ensembles AT and the set of ensembles A/

may be different. (If A is deterministic, then AT consists of a single execution, in

which case it is immediate to see that there exist functions / such that AT = A/.
However, if A is probabilistic, it may happen that in one execution of AT, the

ith query, q, is answered by a value v, while in a different execution the same

string </, asked as the jth query, where j φ i, is answered by a value other than

v. In this case for no function / is A/ equal to AT) Nonetheless, it is simple
to notice that, whether or not A is probabilistic, for any event E, the following
identity holds:

(*) : ProbC(A)j.D^R (E occurs in Aj) - ProbC(A},TtRN (E occurs in Aτ)

The above concept, notation, and identity naturally extend to more "complex"
cases.21

20 Indeed, a probabilistic oracle-calling algorithm A(.t,,,,.)(-,... , •) is TV-call if in each

of its executions (i.e., for any possible choice of its inputs, oracles, and coin tosses)

A makes ./V calls to each of its oracles.
21 For instance, Let T be a TV-long sequence whose values belong to a finite set R, and

let A(.;.)() be a N-call algorithm that always queries its first oracle about a string

251

Let m and M be positive integers such that m < M, let σ be a string, and

let T — {σi : i E [1, M] — {m} } be a sequence of strings. Then, by the notation

Tm = σ we shall denote the M-long sequence σ i , . . . , σm_ι, σ, σm + 1,... , σ^f.

Let T = (σ i , . . . , <τm) be a sequence of strings (in Σr)\ then we say that

the (Σ?Γ-valued sequence) T = (< T I , . . . ,σjvί) is an extension of T (over Σr) if

m < M and σ2 = <τ2 for i = 1, . . . , m.

Let m be a non-negative integer and S a sequence of pairs of binary strings,

S — (xi, j/i), , (a?mι ί/m). We say that 5 is extendible from Σil to Σ^ if ̂ is

the length of all the x t 's, ^2 is the length of all the y»'s, and, whenever i φ j, we

have Xi φ Xj and yι φ y j . (The reason for insisting that yι φ yj whenever a?, φ Xj

will become clear in Corollary 1.) If S = (a?ι, t / i) , . . . , (xm, ym) is extendible from

Σ*1 to Σ^ and the function / : {0, l}^1 -> {0,1}*2 is such that /(zt) = j/, for

i = 1, . . . , m, then we say that / is an extension of S; in symbols, / G ext(S).

Definition: Let A be an algorithm calling one or more oracles. Then, in an

execution of A where the function / was one of its oracles, we say that A finds

an f-collision if A queries / about two different strings x and y such that f (x) =

f(y)

To proceed, we need to state (without proof) a "converse" of the well-known

birthday paradox.

Lemma 1: V positive integers fc, V possible inputs Z\,ZΊ, . . . , V 2/c/4-call algo-

rithms ./4(.,...,.)(•, . . . , •) > and V possible oracles /i,/2,. ,/{, /2> >

p r ° b c (A) ί f : Σ * k - + Σ k (A f l t . . . , f l j ' l 1 . . . (z ι > Z ϊ , . . .) finds an f-collision)< 2~h/2.

Corollary 1: V positive integers /?, V positive integers m < 2Λ/4, V sequences

5 = (x ι ,2/ ι) , . . ,(*m,ί/m) extendible from Γ2* to Σ*, V 2*/4-call algorithms

A(. Γ)(, . . . , •), V possible inputs zι,z 2 , . . . , and V possible oracles /ι,/2, .. ,/ί,

/5/.'".1,

n f-collision)< 2~h/2.

Proof of Corollary 1: Algorithm A has no greater a chance of finding a /-collision

in the present setting than in that of Lemma 1. In fact, if it makes two queries

a and β both in the set X — {a? ι , . . . , xm}, then we are guaranteed that /(α) φ

in a finite set D. Then, A τ , f 2 (x) denotes an execution of A, where x is the input,
/2 the second oracle, and where the zth query of A to the first oracle is answered by
the ith string of a sequence T. It is immediately seen that, for all possible choices of

/2, x, D, and R,

Probfι:D^Rj2 (E occurs in Aflj2(x)) = Probτ^RM >f2 (E occurs in Aτ,f2(x))

252

/(/?); on the other side, if α and β are not both in X, then the probability that

f (a) = f (β) still is 2-*. D
Let us now prove that (P, V) satisfies computational soundness if we choose

the 4th, 5th, and 6th fundamental constants as follows:

-- c4 = the smallest integer i such that nl > Si(n) -f 32,

- c5 = 1/16, and

- c6 = 1/16.

(To facilitate the comprehension of what follows, we prefer to make use of the

different "labels" CB and CQ rather than their common numerical value 1/16.)

The proof is by contradiction. Assume that computational soundness does

not hold for our choice of 4th, 5th, and 6th fundamental constants, then the

following proposition holds:

pi : There exist an integer n' > 1, a ri -bit string q' £ £, an integer k' > (π')C4

7

and a deterministic, 2°5/c -call, cheating prover P' such that

Γ2 f̂c/)/2.^^^^^

Additional notation: A function mapping Σ2k> into Σk will always be indi-

cated by /i (with possible superscripts) . Similarly, /2 (with possible superscripts)

will always denote a function mapping Σk into Σk L^n).

We shall solely focus on the non-empty outputs of a cheating prover P1]

thus, when writing ' P j l t f 2 (q / , k1) = C', we mean that P1 has output a non-empty
string, and that this string is C'. If this occurs, given that a cheating prover

always verifies its own non-empty outputs, we must have V/1 j2 (q1 , k1 , C'} = YES.

Assume now that, during the verification of C', samplable verifier V virtually asks

about a bit-location i of the virtual samplable proof; then, we write C1 9 i.

If P'fa j2(q' , k') = C', to emphasize that q' (£ £, we refer to C' as a pseudo-

certificate (of q' G £). We further say that C' is relative to σ £ Σk>L^ if

σ = /2(<?'|/ζ), where R'e is the pseudo-root (i.e., the Ar'-bit prefix) of C7. Thus,

whenever Pfltj2(q' , k'} = C ', then C' is relative to some string σ £ Σk'L^n'^ sent

by the second oracle to P1 in reply to one of its queries in that execution.

Let 5 = (si, . . . , Si) be a sequence. Then ("abusing" our concatenation oper-

ator), for any value 5, we let S\s denote the sequence whose first i values coincide

with those of 5, and whose i+lst value is s.

Lemma 2: Proposition pi implies the following proposition

p2 : There exist a k1 -bit value R'ε; a <2c*k> -long sequence S extendible from Σ2k>

to Σk an integer m £ [l,2C5/e/]; and a sequence

T = {σi G Σk'L^ : i E [1, 2C5/C/] - {m} },

253

such that

Proof of Lemma 2: According to our just established notation, proposition pi

implies

Thus, because V is a 2Csfe/-oracle, and because it "verifies" all of its pseudo-

certificates (i.e., each of them is relative to a string σ £ J7 fe/L(n/) obtained by P1

in response to a query made to its second oracle), by averaging there must exist

a positive integer m < 2c*k/ such that P1 outputs a pseudo-certificate relative

to the rath reply of its second oracle with probability at least 2~(C5+C6)A:'. Thus,

denoting by C[m] a pseudo-certificate relative to the rath query to the second

oracle, we have

p = Probhth(P'hιh(q',k') = CM) > 2-(c*+c°>fc'.

Let us now write p = p\ + Pi where

pl — Probf1j2(Pjιj2(q', k') = C[m] Λ at least one /i-collision)

and

P2 = Probhj2(P'hJ:ι(q',k') = C[m] Λ no /i -collisions).

Now, in view of Corollary 1 and property (*) and our constraints on 05, ce, and

', we have Pl < 2~'/4 < 2~^+c^k'-1. Thus,

(3): Pro6/1)/2(p}i)/2(^, k1) = C[m] Λ no /α -collisions) > 2-<Cβ+Cβ)*'-1.

Now let us again make use of averaging for "growing" a sequence of pairs of

strings, 5, and for choosing the first ra— 1 entries of a sequence T as follows. We

initially set 5 and T to be empty, and start executing algorithm P1 on inputs q1

and k' from the initial configuration, and handling oracle calls in the following

manner. If P1 queries its first oracle about a new 2&'-bit string, x, we choose

a reply y in Σk which (a) is different from all the second entries of the pairs

currently belonging to 5, and (b) "preserves Equation 4," that is, denoting by

T a 2C5/c/-long sequence with values in Σk L^n \ such that

τ(^' f e /) = CH Λ no /I -Collisions) >

reset S = S\(x, y); feed P' with y, and resume the execution. If P1 makes its jth

query to the second oracle, and j < ra, we choose a reply σ, E Σ*/L(n/) so as to

preserve Equation 4, that is, such that

254

HO

reset T — T\σ$\ feed V with y, and resume the execution. When P1 makes its

mth query to its second oracle, we stop this process, thereby having already

constructed the entire desired sequence S (which is < 2C5/e -long because P1 is

2C5/c/-call) and the first ra - 1 strings of T. As for the other the elements of T

(i.e., from the ra + 1st on), we simply choose them so as to preserve Equation 4,

that is, so that

^,^^^^,*') =C[m]) > 2-<

Now notice that, given that P1 is deterministic, V /i E ezt(S) and V σ £ Σk'L(n'\

the computation of PjιTm=σ(qf ,k'} is totally determined up to the rath query

to the second oracle. Thus, there exists a unique Ar-bit string, R'ε, such that, in

any execution of P'^ Tm=σ(q' , k ') , the rath query to the second oracle consists of

R'ε. Thus, whenever such an execution ends in outputting a certificate relative

to the rath query, R'ε must be its fc-bit prefix. D

Let now 5, T and R'ε be like in proposition p2, and consider the following

algorithm A calling an oracle f\ £ ext(S):

Algorithm A/l

Al. For j = I to 4 2^n/) .2(C5+C6)*'+2, randomly select σj G Σ*/L(n/) and execute
ί>Λ,τm=σ,(ϊ/.*/).

A2. If in Step Al algorithm P' has output < 2 2£(n') pseudo-certificates (of

q' £ £) whose prefix is Λ^, HALT without any output. Else,

A3. Compute BL, the set of bit-locations i such that, for some execution j,

A4. If, for some i £ BL, there is no unique bit 6, such that all questions of I/

about bit-location i have been consistently answered with 6; , HALT without

any output. Else,

Λ5. HALT outputting the 2^n/)-long string r whose ith character is 6, , i f f G £L,

and * otherwise.

Lemma 3: There exists /{ £ ext(S) such that

ProbC(A)(Λflhaits in Step A5) > 1/2

and

Σk,L(n,}(P'f, ιTm=σ(q',k>) = R'€ •) >

255

Proof of Lemma 3. Say that a function /i G ext(S) is lucky if

Then, a simple counting argument shows that

Probh€ext(S)(fι is lucky) > 5

Now, the probability that A (run with an oracle /i £ ext(S)) does not halt in

Step Λ5 is bounded above by the sum of (1) the probability of halting at Step
A2 and (2) the probability of halting at Step A4. Now a simple application of

ChernofΓs bounds shows that the first probability is clearly upperbounded by
2-(c5+c6)/e -3 Let us now show that also the second probability is upperbounded

by 2-(C5+C6)A:'-3. To this end, notice that, whenever A f , halts in Step ,45, then a

/i-collision has been found. Consider in fact, the following two conceptual steps

for "locating" such a collision.

Cl. Find a bit-location i, the leaf / containing it (/ = \i/k']), and two sibling-
paths (possibly belonging to the same certificate) PI and P^ between leaf I

and the (alleged) root of the (alleged) 7/v, according to which the bit stored

in location i is different. Then, denoting \I\ = a\- αq0gΛτ, we can write PI
and PI as follows:

p pi 7? ί? f?

and
Γ) ι?2 z?2 o2 o2
^2 - ^αi α i o β Λ Γ - i ά i o g j v ' ^αr α i o g Λ Γ - i ' ' ' ' 'Kαι'Kε

where Rrj, = Λ^. .α, ^ is the value stored in leaf / according to P1} and
Rμ, — R^l...a]o N is the value stored in leaf / according to P%.

(Comments: First, R}^ φ R?^, because their (i — ([I] — l)Ar')th bits are

different, since they represent their respective values stored in bit-location i.
Second, Λ* = R'ε = R^ because both sibling-path occur within a certificate
or two certificates whose pseudo-root is R'ε.)

C2. Find m E [l,log7V] such that

(Comment: Such m must exist because of three reasons.

First, /«K) = ̂ = /«|Λ11).

Second, R^.-a^^R^...^^ Φ Rll...aiotN\RlΓ..eiίasN I" fact, their *'-
bit prefixes

Third, P1 verifies all its non-empty outputs, and thus has made all relevant
queries to oracle /i, including X and Y.)

256

Now, notice that A calls its oracle 4 2^n/) .2(C5+Cβ)*'+2 times. Therefore, because

c5 = c6 = 1/16 and fc' > (n')C4 > W(n') -f 32, A is a 2*'/4-call algorithm.

Moreover, because sequence S is extendible from Σ2k to Σk , Corollary 1 implies

Probc(Λ)j^eXt(s)(Λh finds a Λ-collision) < 2'k''2 < 2-(c5+c6)/e'-3>

Consequently, the fraction of functions /i G ext(S) for which ./4//S probability
of halting in Step Λ5 exceeds 1/2 is less than 2 2-(c*+c*ϊk'-3 = 2-(c*+c6)*'-2.

Thus there must exist a function /{ as desired in our hypothesis. D

Definitions: Whenever σ G Σk L(n \ consider it as the concatenation of k1

strings, each L(n')-bit long, and denote by σ[i] the iih such segment.

For any string τ over the alphabet {0, 1, *}, define

Pi = Pro6σ€Γ f c*L (n/)(Λ?l1 SVa[i]te',fc',T) - accept \ Pf

f,Tm=σ(qf ,k') = R'ε . - -) ,

where SV^g', &', r) denotes the execution of samplable verifier SV on inputs q1

and k1 , coin tosses σ^ , and access to string r; with the provision that SV rejects

if it accesses a bit-location of r storing the value * .

Lemma 4 There exists a string f, over {0, 1, *}, such that P~ > 1/2.

Proof of Lemma 4 We shall prove our lemma by showing that algorithm A/^

has a positive probability of outputting a string r as desired.

Let r be a string such that P'f < 1/2. Then,

Probc(A)(Af(outputs f) < 2~2 n .

In fact, for outputting a non-empty string in Step A5, Λ/λ should successfully

compute at least 2 2^n) pseudo-certificates with prefix R'ε in Step Al. Thus,

consider the first > 2 2^(n) randomly- and independently-selected strings
σ G Σk'LM such that

Then, in order for ^4^/ to output r, for each of these σ, the event

should occur. Hence, by the definition of P'f and the fact that its value is less

than 1/2, the probability that all these events occur is at most 2~2 2* n .

Now, because any string outputable by Aj is 2^n/)-long, there may be at

most 32*(n) strings r such that P'r < 1/2. Thus,

257

fi = r Λ P'r < 1/2) < £ l^ < 1/2.

j=ι

But because, as shown in Lemma 3, Af halts in Step A5 (and thus outputs
a non-empty string r) with probability > 1/2, Aj> must output a string f such

that Pί > 1/2. D
We are now ready to finish the proof of computational soundness. Define

k1

Pf = ProbσeΣk,L(n>)(/\ SVσ[i](q',τ) = accept)
i=l

and

Pf = ProbS£ΣL(n')(SVs(qf,τ) = accept).

Then,

(Pr)k' = Pf>PT Probσ^ΣkfL(nί}(r^Tm=σ(q^ k'} = R'£ - •) >

Now, because c$ = CQ = 1/16 and k1 is, in particular, > 8, the above inequality

implies

Pr > 1/2,

a contradiction to the fact that q' £ C and 5V is a samplable verifier. D

Approximating the Random Oracles

We wish to point out, in a quick and informal way, that the just constructed
CS proof-system (P , V) would maintain some key properties if one substituted

its random oracles with some suitable approximations. These approximations

are important not only because we are not sure that a random oracle is realiz-

able by a physical process, but also because all physical processes that behave

as random oracles may be too inconvenient to use (e.g., because they are too
slow in answering their queries). Of course, deciding which approximations are

satisfactory depends from the particular context at hand. Let us mention some

of them.

— Quasi-random oracles. To begin with, one can see that for (P,V) to be a
guaranteed proof-system it is not necessary that /i and /2 be truly random
oracles, but sufficiently random ones.

Assume, for instance, that one may easily select oracles /{ : Σ2k — >• Σk

according to a distribution F± such that, for some positive constants e and

d,

258

Vfc and V 2^-call algorithm A, \pA

k' -pA

k\< 2~e*,

where pA

k/ denotes the probability (computed selecting /{ according to Fιk)

that Af^ outputs 1, and pA

k the probability (computed selecting f\ : Σ2k —>•

Σk at random) that A/λ outputs 1. Then, such /{ may be used instead of

truly random oracles within the construction of (P, V).

Men in the cave. Lipton and Rabin have, independently and in different

occasions, suggested that a random oracle can be implemented by a trusted

party with enough memory.

In Rabin's suggestive language, the oracle (like respectable ones of times

past) is a man living in a cave, with a coin and lots of pen-and-paper.

Whenever someone queries him about a string σ, the wise and old man

first consults his notes to see whether such a request was ever made before.

If so, he retrieves the answer given in the past, and gives that same answer
now. If not, he flips his coin the right number of times so as to construct a

random string τ; gives r as his answer; and records that, from now on, query

σ should always be answered with τ.

It would appear that such an implementation of a random oracle is useless

in our application, because if our man is corruptable, it would be easy for

a cheating Prover to find CS witnesses for false statements. This is not

true, because there are contexts in which we can be sure that a man-in-

the-cave implementation of a random oracle is trustworthy. For instance, in
the context of Certified Computation (see later sections), we may wish to

construct a man-in-the-cave by means of a simple probabilistic algorithm,

run as a subroutine by other programs for our own use. (Jumping ahead, our

oracle only "talks" to an algorithm of ours whose results we wish to test.)

In this application, being the only beneficiary of a correct man-in-the-cave
implementation, we have no incentive to cheat (ourselves)!

Finally, a random oracle can be implemented by having the cryptographic

random-function construction of Goldreich, Goldwasser, and Micali [17] (with
suitably large security parameters) run within in a tamper-proof chip; one,

that is, whose content (program and data) cannot be altered or read from

the outside (without destroying it altogether). If the seeds are secret, their

pseudo-random functions are provably indistinguishable from truly random

ones by any observer, who access them as an oracle, that does not have
sufficient resources for solving a given problem (e.g., factoring a 10,000-bit

number).

To ensure its secrecy, the seed could be selected within the chip by some

"physical" method (e.g., noise diodes, Geiger counter, etc.). Alternatively,

different people can each provide to the chip his own random and secret

number, and the chip obtains its own seed by exclusive-oring all these inputs.

This way, unless all the parties providing inputs to the chip are corrupt and

259

reveal what their individual input was, the resulting seed will be both random

and secret. (Incidentally, if the seed were known, certain unpredictability

properties of the corresponding pseudo-random function would disappear,

but, for all we know, the difficulty of finding CS proofs for false statements

may remain sufficiently intact.)

3.2 CS Proofs with a Random String

Though in this paper we do not address the problem of explicitly constructing

CS proofs with a random string, we wish to present their definition and mention

their applications.

The Notion of a CS Proof-System with a Random String

In a CS proof-system with a random oracle a cheating Prover was allowed to

be an algorithm which could make only a bounded number of oracle calls, but

have an arbitrarily long description. Informally, this was so because finding guar-

anteed CS certificates for a false statement implied finding special structures in

a random oracle —e.g., two different strings x and y such that f ι (x) = fι(y)—

discoverable only by making extraordinarily many queries. Having lots of infor-

mation "built-in" in the finite-state control of an oracle-calling algorithm could
not help at all in finding these structures.

In a CS proof-system with a random string, Prover and Verifier are ordinary

(as opposed to oracle-calling) algorithms, sharing a short random string r. That

is, whenever the security parameter is k, they share a string r that both believe

to have been randomly selected among those having length kc, where c is a
positive constant.

Because string r is assumed to be universally known (at lest by all those who

wish to check CS proofs of security-level k), and because a CS certificate of q is

verifiable in our new setting given q and r, a good-looking certificate for a false

statement is certainly discoverable by exhaustive search. Thus, the only hope

to stop a malicious Prover from cheating consists of bounding the number of

computational steps he can perform. But bounding a cheating Prover's running
time is meaningless unless its description is also bounded. (For instance, factor-

ing a randomly chosen k-b'ιt integer appears to be computationally intractable

when k is large, but not for an algorithm whose description is about 2^-bit long!

Indeed, the finite state control of such a Turing machine could easily encode

the factorization of all k-bit integers.) For this reason, in a cryptographic CS

proof-systems, a cheating prover is envisaged to be an algorithm whose run-

ning time and description, in some standard encoding, are both bounded. We

actually accomplish both tasks at once, by letting cheating provers be Boolean

combinatorial circuits with a bounded number of gates.

260

Definition: A circuit of size < s is a finite function computable by at most
s Boolean gates, where each gate is either a NOT-gate (with one binary input

and one binary output) or an AND-gate (with two binary inputs and one binary

output).

Definition: Let (P, V) be a pair of Turing machines, the second of which runs
in polynomial-time. We say that such a pair (P, V) is a CS proof-system with
a random string if there exists a sequence of 6 positive constants, GI, . . . , c$
(refereed to as the fundamental constants of the system), such that the following

two properties are satisfied:

1"'. Feasible Completeness. V integers n > 1, V n-bit input q = (M , x , t) £ £,
V unary integers fc, and V r £ Σk°l,

(i) on inputs q, Ar, and r, P halts within (nkt)°2 computational steps, and

outputs a binary string whose length is < (n&log/) C 3 , and

(π) Whenever C = P(k, r, q), V(k, r, q, C) = YES.
2". Computational Soundness. V integers n > 1, V n — b i t q 7 (£ £, V k > nC 4, and

V (cheating) circuits P7 whose size is < 2c*k,

Pro6r€JCfcCl (P7(q7, fc, r) = C' Λ V(q7, k, r, G7) = YES) < 2C6/e.

The Importance of CS Proofs with a Random String

CS proof-systems with a random string are important because of at least

three reasons.

First, because (as we shall explain in a forthcoming paper) they are explicitly
constructable under a new, but in our opinion plausible, complexity assump-
tion.

Second, because it is much easier for two players (i.e., Prover and Verifier)
or society at large to establish a common random string than a common
random oracle.

Third, because the certificates for q G C they produce are polynomial-time
recognizable.

The latter technical reason is full of notable consequences. In particular, it
allows us to enlarge Blum's notion of program checking in new and powerful ways,
and to prove that heuristics for A^P-complete problems are checkable in this
broader sense. For instance, given an efficient heuristic H for graph Hamiltonicity
and a specific graph G, we show how it is possible to run H twice (once on G

and once of an efficiently computed graph G7 for which deciding Hamiltonicity

261

is roughly "as hard as for G") and either (1) prove that H is wrong on at least

one of these two graphs, or (2) establish with a "great degree of confidence" that

H's answer about graph G is correct.

These applications of CS proofs with a random string will also appear in the
mentioned forthcoming paper.

3.3 Deterministic CS Proofs

Definition: Let (P, V) be a pair of Turing machines, the second of which runs

in polynomial- time. We say that such a pair (P, V) is a deterministic CS proof-

system if there exists a sequence of 5 positive constants, c\ , . . . , c$ (refereed to as

the fundamental constants of the system), such that the following two properties

are satisfied:

1'" '. Feasible Completeness. V integers n > 1, V n-bit input q = (M,x,<) £ £,

and V unary integers fc,

(i) on inputs q and fc, P halts within (nkt)Cl computational steps, and

outputs a binary string whose length is < (n&logt)C 2, and

(if) Whenever C = P(q,*), V(q,*,C) = YES.

1"' . Computational Soundness. V integers n > 1, V n — bitq' £ £, V fc > rιC3, and

V (cheating) probabilistic algorithms P'(, •) halting in less than < 2c*fe steps

whenever their second input is k (in unary),

Pro&(P'(q', k) = C' Λ l/(q', fc, C7) = Y£S) < 2C5/C

As we said, we believe that the complexity assumption needed to build de-

terministic CS proof-systems is much stronger than that necessary for CS proof-

systems with a random string.

4 Certified Computation

In this short section we reinterpret the results obtained so far in terms of com-

putation rather than proofs. More precisely, we aim at obtaining certificates

ensuring that no error has occurred in a given execution of a given algorithm

on a given input. That is, certified computation does not deal with semantic

questions such as "is algorithm A correct?'' Rather it addresses the following

syntactic question:

Is string y what algorithm A should output on input x (no matter what A is

supposed to do)?

262

This question is quite crucial. Consider running executing A on an input x so

as to obtain a result y. How can we be sure that y — A(x)Ί In real life, such an

execution occurs by means a physical computer, and all sort of errors may occur,

yielding a wrong value for A(x). For instance, the computer hardware may be

defective. Alternatively, the hardware may function properly, but the operating

system may be flawed. Alternatively yet, hardware and software may be fine,

but some α rays succeed in flipping a bit together with its controls, so that the

original bit value is not restored.

Also, having run A on input x so as to obtain a result y, can we convince

someone else that y is the right result without having him re-do the computation

himself?

Certified computation provides a way to answer these basic questions, for

any algorithm and any input.

"Defining" Certified Computation. In view of our work so far, formalizing

and exemplifying (at least given a random oracle) the notion of certified compu-

tation is rather straightforward, but tedious indeed. We thus think that is best

to proceed at a very intuitive level.

Informal Definition: A certified-computation system is a pair of efficient

algorithms, (C, V). Given any algorithm A as input, C outputs an equivalent

algorithm A' enjoying the following properties.

1. A1 runs in essentially the same time as A does;

2. A' receives the same inputs applicable to A and produces the same out-

puts; and

3. for each input x, A1 produces, besides the right output y, also a short

and easily inspectable string, CAxy, vouching that indeed y — A(x) in

the following sense:

If y = A(x), then V(A,x,y,CAxy) - YES. Else, it is very hard to

find a string σ such that V(A, x, y, σ) — YES.

Of course, one may ask who verifies the correctness of the verifier (i.e., either

of algorithm V itself or of its executions). Note, however, that such a V is a

unique program, capable of verifying certificates for the correct execution of all

other programs. It is thus meaningful to invest sufficient time in proving the

correctness of this particular algorithm (e.g., by verification methods). Also,

being V quite efficient (and running on short inputs) we may afford to execute

it on very "conservative" hardware (i.e., with particular redundancy, resiliency,

and so on), or even on a multiplicity of hardwares.

Constructing certified-computation systems. One possible way of con-

structing program certification systems essentially consists of giving a CS proof

263

of the statement "y = A(x)" That is, on input x, A1 — C(Λ) first runs A on

input x so that, after some number T of steps, an output y is obtained. Then,

A' outputs y and a CS proof that y = A(x). Because the latter statement can be

decided in time T, the length of its corresponding CS proof will be polynomial

in logT (and, of course, |ar | , |t/|, and some suitable security parameter Ar), and

so will be the time to inspect it, and the time to construct it.

Pros and cons. A certified-computation system can be considered as a univer-

sal and guaranteed casting-out-nines procedure. (Such a procedure is executed

after a multiplication, but does does not guarantee an "arbitrarily high guaran-

tee of correctness" for every single input.) In other words, certified computation

is not a special property enjoyed by a few computational problems (such as mul-

tiplication or GCD computation.22), but is an intrinsic property of computation.

However, unless one can find a version or representation of the execution

history of an algorithm that is both convenient and sufficient for our purposes,23

our result will not be practical.

Assumptions and implementations. Certified-computation systems can be

built based on a random oracle, but are particularly meaningful when con-

structed, under our assumption, based on a CS proofs with a random string

for at least two reasons.

First, in this application, the random string needs not be agreed upon by

both Prover and Verifier by virtue of some possibly difficult negotiation. When

seeking reassurance that indeed y — A (x] , the user of a certified-computation

system (P, V) controls both P and V, and thus can choose their common string

in a way that he believes to be genuinely random, without "asking for their

consent."

22 Indeed, the extended GCD algorithm may be a bit more cumbersome than the

ordinary GCD onalgorithm, but more "reliable". In fact, according to Blum's point

of view, by outputting not only the greatest common divisor, c, of two integers α and

6, but also two integers x and y such that ax + by = c, the extended CGD algorithm

allows one to check the validity of c quite easily. That is, by checking that indeed

ax 4- by = c and that c evenly divides both a and 6, all operations much simpler and

computationally less intensive than GCD computation. Note, however, that x and

y consist of a quite long certificate for c's correctness (in relative terms), and that

three multiplications and one addition are quite long (relative to the time required by

GCD computation). By comparison, our certified-computation system may produce

relatively shorter and more easily inspectable certificates, but has a probability of

error.
23 Certainly, one that does not consist of the sequence of all instantaneous Turing

machine configurations.

264

In addition, in this application, algorithm P "sits on top of the user desk"
and thus there is no question of it being implemented by a circuit compris-
ing 2^ gates (nor of its making more than 2k steps of computation), even for
moderately small k. That is, if the underlying complexity assumption is true, a
certified-computation system de facto offers the same guarantees of a probabilis-
tic algorithm.

Conceivable applications of certified computation. Certified computa-
tion can in principle be quite useful when "contracting out" computer time.
Indeed, consider an algorithm A that we believe to be correct, but is very time-
consuming. Then, we can temporarily hire a super-computing company for exe-
cuting A on a given input x on their computers, and agree that we will pay for
their efforts if they give us back the value y = A(x) together with a certificate
of correct execution.

Still in principle, certified computation may facilitate the verification of cer-
tain mathematical theorems proven with the help of a computer search (as in the
case of the 4-color theorem). For instance, the proof may depend on a Lemma
stating that there is no sparse graph with less than 50 nodes possessing a given
property, and the Lemma could be proved by means of an exhaustive search
taking a few years of computing. Usually, algorithms performing an exhaustive
search appear to be correct "by eye inspection". Thus, rather than (1) asking
the reader of trusting that such a search has been done and has returned a neg-
ative result, or (2) asking the reader to perform such an extensive computation
himself, one might publish together with the rest of the proof a compact, correct-
execution certificate. If the security parameter where chosen to be —say— 1,000,
then even the most skeptic reader might believe that no one has invested 21>00°
steps of computation in order to find a false certificate, nor that he has succeeded
in finding one by relying on a probability of success less than 2~1)000.

5 Final Remarks

Are CS proofs really proofs? In our minds this question really goes together
with an older one: do probabilistic algorithms [38] [31] really compute? There
is a sense in which both answers should be NO. These negative answers, in our
opinion, may stem from two different reasons: (1) a specific interpretation of the
words "proof" and "computation," and (2) our mathematical tradition. The first
reason is certainly true, but also "innocuous." The second is more "dangerous"
and less acceptable: not because it is false that these notions break with a long
past, but because the unchallenged length of a tradition should not be taken as
implying that specific formalizations of fundamental intuitions are "final."

265

Indeed, we believe that even fundamental intuitions cannot be divorced by
the large historical contexts in which they have arisen, and we expect that they
will change with the changing of these contexts. Up to now, the ideas of this paper
have not met much favor, exception made for the invaluable support of a trusted
group of scientific friends. We hope, however, that, in the future, they will be
regarded to be as natural as is, by now, the notion of probabilistic computation.

Truths versus proofs. According to our highest-level goal, CS proofs pro-
pose a very appealing relationship between proving and deciding. In the thirties,
Turing, Church, and others suggested that deciding a mathematical statement
consists of running a specific algorithm. Today, we are suggesting that proving
a mathematical statement consists of feasibly speeding up the verification of
the output of any decision algorithm. That is, proofs should guarantee to any
third party an exponential speed-up in verifying that the output of any deciding
process is YES; but they should not be more time-consuming than the com-
putations whose verification they wish to facilitate. This, in our opinion, is the
right relationship between proving and deciding, and one that guarantees that
proving is both a useful and a distinct notion.

In order to offer this guarantee, CS proofs replace the traditional notion of
truth with a computational one. Namely, the difference between proving true a
correct statement and proving true a false one now is the difference between an
easy computation and an extraordinarily hard one. Indeed, wishing to convince
any third party (and not just a Verifier interacting with them) of the verity of a
given theorem, CS Provers issue a CS certificate, a string that can be thought of
as a "compressed version" of a much longer deciding computation. But the same
conciseness that gives CS certificates their distinctive advantage, also causes
them to "lose information" with respect to the computations they compress.
It is thus possible that correct-looking certificates of false theorems exist, and
whenever they do, of course, they can also be found by means of an exponential
search. CS proofs guarantee, however, that essentially only an exponential search
could be successful in finding misleading certificates.

In sum, the notion of a true theorem has not changed. What has changed,
and in a computational-complexity direction, is the notion of what it means to
prove that a theorem is true. Besides being very adequate in practice and very
advantageous, this change also is, in our opinion, very natural. Indeed, proofs
have no meaning outside efficiency: with or without modern terminology, they
have always been, at least implicitly, a complexity-theoretic notion.

Let me emphasize, however, that, though very natural, the computational
boundedness of a cheating prover is not, per se, a goal of the notion of a proof.
Rather, it is the Trojan horse that lets us sneak in and achieve our desiderata.
It is actually very important to establish whether some type of CS proofs exist

266

when a cheating Prover can compute for an unbounded amount of time. 24

We believe and hope that CS proofs maybe useful in many more applications

than the ones envisaged here.

6 Acknowledgments

My most sincere thanks go to Allan Borodin, Steve Cook, Oded Goldreich, Shafi
Goldwasser, Leonid Levin, and Michael Rabin for encouraging and criticizing
this research, in different ways and at various stages of its development.

Thanks also to Shai Halevi, Ray Sidney and Janos Makowski (and two ref-
erees) for their comments.

References

1. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and
hardness of approximation problems. Proc. 33rd. IEEE Conference on Foundation
of Computer Science, 1992, pp. 14-23.

2. S. Arora and M. Safra. Probabilistic checking of proofs. Proc. 33rd. IEEE Confer-
ence on Foundation of Computer Science, 1992, pp. 2-13.

3. L. Babai and L. Fortnow and L. Levin and M. Szegedy. Checking Computation in
Polylogarithrnic Time. Proc. of STOC91.

4. L. Babai and S. Moran. JCSS 1988. A preliminary version due to the first au-
thor, "Trading Group Theory for Randomness," appeared in Proc. 17th Annual
Symposium on Theory of Computing, 1985, pp. 421-429.

5. M. Ben-or and S. Goldwasser and J. Kilian and A. Wigderson. Multi Prover In-
teractive Proofs: How to Remove Intractability. Proc. 20th ACM Symp. on Theory
of Computing, 1988, pp. 113-131.

6. M. Blum, A. De Santis, S. Micali, and G. Persiano. Non-Interactive Zero-
Knowledge. SI AM J. on Comp. 1991.

7. M. Blum, P. Feldman, and S. Micali. Non-Interactive Zero-Knowledge Proof Sys-
tems and Applications. STOC 1988.

8. M. Blum and S. Kannan. Designing Programs that check their work. Proc. 21st
Symposium on Theory of Computing, 1989, pp. 86-97.

9. M. Blum, M. Luby, and R. Rubinfeld. Self-Testing and Self-Correcting Programs,
With Applications to Numerical Problems. Proc. 22nd ACM Symp. on Theory of
Computing, 1990, pp. 73-83.

24 By means of a weaker construction (in particular, one not enjoying feasible complete-
ness), we had previously observed that, via Merkle trees and the self reducibility
of the permanent, a bounded prover could demonstrate membership in any
language. Our observation in fact followed the preliminary announcement that #P
is efficiently accepted by a 2-Prover system, but lost any interest a few days later,
with the final announcement that #P C IP [26]. We wonder if also CS proofs (at
least their interactive counter-part) may be subject to the same fate.

267

10. M. Blum and S. Micali. How to Generate Cryptographically-Strong Sequences of

Pseudo-Random Bits. SIAM J. on Comp. vol 13, 1984

11. G. Brassard and D. Chaum and C. Crepeau. Minimum Disclosure Proofs of Knowl-

edge. J. Comput. System Sci., 37, 1988, pp. 156-189.

12. S. Cook. The Complexity of Theorem Proving Procedures. Proc. 3rd Annual ACM

Symposium on Theory of Computing, 1971, pp. 151-158.

13. U. Feige and S. Goldwasser and L. Lovasz and S. Safra and M. Szegedi. Approxi-

mating Clique is Almost NP-complete. 32nd FOCS, 1991, pp. 2-12.

14. A. Fiat and A. Shamir. How to Prove Yourselves: Practical Solutions of Identi-

fication and Signature Problems. Proc. Crypto 86, Springer- Verlag, 263, 1987,

pp. 186-194.

15. L. Fortnow. The Complexity of Perfect Zero Knowledge. Randomness and Com-

putation, Advances in Computer Research, ed. S. Micali, JAI Press, 1989, pp.

327-344.

16. L. Fortnow, J. Rompel, and M. Sipser. On the Power of Multi-Prover Interactive

Protocols. Proc. 3rd Structure in Complexity Theory Conf., 1988, pp. 151-158.

17. O. Goldreich, S. Goldwasser, and S. Micali. How To Construct Random Functions.

J. of ACM 1986

18. S. Goldwasser and S. Micali and C. RackofΓ. The Knowledge Complexity of Inter-

active Proof Systems. SIAM J. Comput., 18, 1989, pp. 186-208. An earlier version

of this result informally introducing the notion of a proof of knowledge appeared in

Proc. 17th Annual Symposium on Theory of Computing, 1985, pp. 291-304. (Ear-

lier yet versions include "Knowledge Complexity," submitted to the 25th Annual

Symposium on the Foundations of Computer Science, 1984.)

19. S. Goldwasser, S. Micali, and R. Rivest, A Digital Signature Scheme Secure Against

Adaptive Chosen-Message Attacks, SIAM J. Comput., Vol 17, No. 2, April 1988,

pp. 281-308.

(A preliminary version of this article appeared with the title "A paradoxical solu-

tion to the signature problem" in Proc. of 25th Annual IEEE Symposium on the

Foundations of Computer Science, FL, November 1984, pp. 464-479.)

20. O. Goldreich, S. Micali, and A. Wigderson. Proofs that Yield Nothing But Their

Validity or All Languages in λίP have Zero-Knowledge Proof Systems. J. of the
ACM, Vol 38, No. 1, July 1991, pp. 691-729.

(A preliminary version of this paper, under the title "Proofs that yield nothing but

their validity and a methodology for cryptographic protocol design," appeared in

Proc. 27th Annual Symposium on Foundations of Computer Science, IEEE, New

York, 1986, pp. 174-187.)

21. R. Karp. Reducibility among combinatorial problems. Complexity of Computer

Computations, R. Miller and J. Thatcher eds., Plenum, New York, 1972, pp. 85-

103.

22. J. Kilian. A Note on Efficient Zero-Knowledge Proofs and Arguments. Proc. 24th

Ann. Symp. on Theory of Computing, Victoria, Canada, 1992.

23. R. Impagliazzo, J. Hastad, L. Levin, and M. Luby. Pseudo-Random Generation

under uniform Assumptions. STOC 1990.

268

24. R. Impagliazzo, L. Levin, and M. Luby. Pseudo-Random Generation From one-way

functions. STOC 1989
25. L. Levin. Universal Sequential Search Problems. Problems Inform. Transmission,

Vol. 9, No. 3, 1973, pp. 265-266.

26. C. Lund and L. Fortnow and H. Karloff and N. Nisan. Algebraic Methods for

Interactive Proof Systems. Proc. 22nd STOC, 1990.
27. R. Merkle. A Certified Digital Signature. Proc. Crypto 1989. Springer Verlag, 1990.
28. S. Micali. CS Proofs. Proc. 35th Annual Symposium on Foundations of Computer

Science, 1994, pp.
(An earlier version of this paper appeared as Technical Memo MIT/LCS/TM-510.
Earlier yet versions were submitted to the 25th Annual Symposium on Theory of

Computing, 1993, and the 34th Annual Symposium on Foundations of Computer
Science, 1993.)

29. S. Micali, Private Communication to Shafi Goldwasser, 1992.
30. A. Polishchuk and D. Spielman. Nearly-linear Size Holographic Proofs. Proc. STOC

1994.
31. M. Rabin. Digitalized Signatures, in Foundations of Secure Computation, Academic

Press, 1978, pp. 155-168.
32. M. Rabin. Digitalized Signatures as Intractable as Factorization. MIT Laboratory

for Computer Science Technical Report MIT/LCS/TR-212, Massachusetts Insti-
tute of Technology, Cambridge, MA, January 1979.

33. M. Rabin. Probabilistic algorithms for testing primality. J. Number Theory, Vol.

12, 1980, pp. 128-138.
34. R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures

and Public-Key Cryptosystems. Comm. ACM, Vol. 21, 1978, pp. 120-126.
35. R. Rivest. The MD5 Message-Digest Algorithm. Internet Activities Board, Request

for Comments 1321, April 1992.
36. Secure Hash Standard. Federal Information Processing Standards, Publication 180,

1993.
37. A. Shamir. IP = PSPACE. Proc. 31st IEEE Foundation of Computer Science

Conference, 1990, pp. 11-15.
38. R. Solovay and V. Strassen. A fast Monte-Carlo test for primality. SIAM J. Comp.,

Vol. 6, 1977, pp. 84-85.
39. M. Sudan. Efficient checking of polynomials and proofs and the hardness of approx-

imation problems. Ph.D. Thesis, University of California at Berkeley, 1992.

40. A. Yao. Theory and Applications of Trap-Door Functions. Proc. 23rd IEEE on

Foundations of Computer Science, 1982.

